SYLLABUS

1. Information regarding the programme

Babeş Bolyai University, Cluj-Napoca
Faculty of Mathematics and Computer Science
Department of Computer Science
Mathematics
Bachelor
Mathematics and Computer Science

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Databases				
2.2 Course coordinator		Lect. Dr. Sabina Surdu					
2.3 Seminar coordinator Lect. Dr. Sabina Surdu							
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8. Code of the	;	MLE5027		·			
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:		·	•	·	hours
Learning using manual, course support, bibliography, course notes					21
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					10
Evaluations					8
Other activities:					1
3.7 Total individual study hours		69			1
2 0 T - t - 1 1		105			

3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Lecture room with a video projector
5.2. for the seminar /lab	Lab room with SQL Server, Visual Studio

activities	

6. Specific competencies acquired

	te competencies acquired
es	C 5.1 Identifying basic concepts for data organization in databases
enci	C 5.2 Identifying and explaining basic models for data organization and management in
pete	databases
Professional competencies	C 5.3 Using methodologies and database design environments for specific problems
iona	C 5.4 Evaluating the quality of various Database Management Systems in terms of their
ofess	structure, functionality and extensibility
Pre	C 5.5 Developing projects involving databases
	CT1 - Applying organized and efficient work rules, responsible attitudes towards the
	didactic and scientific field, in order to creatively capitalize on one's own potential, while
es	respecting the professional ethics principles and rules
Transversal competencies	CT3 - Use efficient methods and techniques for learning, knowledge gaining, researching
sve oete	and developing abilities for knowledge capitalization and accommodation to the
ran	requirements of a dynamic society
H 00	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To get acquainted with the fundamental concepts concerning databases To gain a thorough understanding of the relational data model
7.2 Specific objective of the discipline	 To manage (to create, to modify) relational databases in SQL Server To analyze data using complex SQL queries To optimize SQL queries

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Databases	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
2. The Relational Data Model	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
3. SQL Queries	Interactive	
	presentation	
	Conversation	
	Examples	
	Explanation	
4. Functional Dependencies, Normal Forms	Interactive	
	presentation	

	Conversation
	Examples
	Explanation
5. The Relational Algebra	Interactive
5. The Kelauonal Algebra	
	presentation Conversation
	Examples
	Explanation
6. The Physical Structure of Databases	Interactive
	presentation
	Conversation
	Examples
	Explanation
7-9. Indexes. Trees. Hash files	Interactive
	presentation
	Conversation
	Examples
	Explanation
10. Evaluating the Relational Algebra Operators	Interactive
	presentation
	Conversation
	Examples
	Explanation
11. Conceptual Modeling	Interactive
	presentation
	Conversation
	Examples
	Explanation
12. Transactions, Concurrency Control	Interactive
	presentation
	Conversation
	Examples
	Explanation
13. Data Streams	Interactive
	presentation
	Conversation
	Examples
	Explanation
14. Problems	Interactive
	presentation
	Conversation
	Examples
	Explanation
Bibliography	

Bibliography

ABADI, D.J., CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL, N., ZDONIK, S.B., Aurora: A New Model and Architecture for Data Stream Management, The VLDB Journal, 12(2):120–139, 2003

ARASU, A., BABCOCK, B., BABU, S., DATAR, M., ITO, K., MOTWANI, R., NISHIZAWA, I., SRIVASTAVA, U., THOMAS, D., VARMA, R., WIDOM, J., STREAM: The Stanford Stream Data Manager, IEEE Data Engineering Bulletin 26(1): 19-26, 2003

ARASU, A., CHERNIACK, M., GALVEZ, E., MAIER, D., MASKEY, A.S., RYVKINA, E., STONEBREAKER, M., TIBBETTS, R., Linear Road: A Stream Data Management Benchmark, Proceedings of The Thirtieth International Conference on Very Large Data Bases (VLDB 2004), 480-491,

2004

DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003

GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book (2nd Edition), Pearson Education, 2009

GRIPAY, Y., LAFOREST, F., LESUEUR, F., LUMINEAU, N., PETIT, J.-M., SCUTURICI, V.-M., SEBAHI, S., SURDU, S., ColisTrack: Testbed for a Pervasive Environment Management System, Proceedings of The 15th International Conference on Extending Database Technology (EDBT 2012), 574-577, 2012

KNUTH, D.E., Tratat de programare a calculatoarelor. Sortare și căutare, Editura Tehnică, București, 1976

LEVENE, M., LOIZOU, G., A Guided Tour of Relational Databases and Beyond, Springer, 1999

LIU, L., OZSU, M.T., Encyclopedia of Database Systems, Springer, 2009

RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (3rd Edition), McGraw-Hill, 2002

SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts (6th Edition), McGraw-Hill, 2011

ŢÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, versiunea 2013-2014

ŢÂMBULEA, L., Baze de date, Litografiat, Cluj-Napoca, 2003

ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html

*** Azure Stream Analytics - technical documentation, <u>https://azure.microsoft.com/en-us/services/stream-analytics/</u>

8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar		
1. SQL - Data Definition Language	Conversation	
	Problems	
	Examples	
	Explanation	
2. SQL - Data Manipulation Language	Conversation	
	Problems	
	Examples	
	Explanation	
3. Stored Procedures, Dynamic SQL, Cursors	Conversation	
	Problems	
	Examples	
	Explanation	
4. Functions, Views, Triggers	Conversation	
	Problems	
	Examples	
	Explanation	
5. Indexes (I)	Conversation	
	Problems	
	Examples	
	Explanation	
6. Indexes (II)	Conversation	

	Problems	
	Examples	
	Explanation	
7. Problems	Conversation	
	Problems	
	Examples	
	Explanation	
Laboratory		
1. Database Design	Conversation	
	Problems	
	Examples	
	Explanation	
2. SQL Queries	Conversation	
	Problems	
	Examples	
	Explanation	
3. Altering the Database	Conversation	
	Problems	
	Examples	
	Explanation	
4. Indexes	Conversation	
	Problems	
	Examples	
	Explanation	
Bibliography		
Course bibliography		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is oriented towards the problems a graduate student should solve at his / her future workplace. The acquired knowledge is considered as mandatory by software companies.
- The course is part of the academic curriculum of all major universities in Romania and abroad.
- The course structure follows the IEEE and ACM Recommendations concerning the Computer Science curriculum.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	 to know and apply the concepts described at the course to solve problems 	• written exam	50%		
10.5 Seminar/lab activities	L	 lab evaluation practical exam 	50%		
10.6 Minimum performance standards					
To pass, a student must get a grade of at least 5 (on a scale of 1 to 10) on the written exam, practical exam and lab evaluation.					

	ent must have at least 6 laboratory he Computer Science Department's <u>15.03.2017.pdf</u> .	
Date	Signature of course coordinator	Signature of seminar coordinator
02.05.2020	Lect. Dr. Sabina Surdu	Lect. Dr. Sabina Surdu

Date of approval

Signature of the head of department

Prof. Dr. Anca Andreica