SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	scipline		Complex Analysis			
2.2 Course coor	din	ator		Lecturer PhD Mihai	IAN	CU	
2.3 Seminar coo	ordi	nator		Lecturer PhD Mihai	IAN	CU	
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	DF/Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2 sem
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					22
Additional documentation (in libraries, on electronic platforms, field documentation)					12
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					7
Evaluations					8
Other activities:					-
2.7 T + 1 : 1: 1: 1 + 1 + 1 + 1 + 1		(0)			1

3.7 Total individual study nours	69
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	• Calculus 1 (Analysis on R); Calculus 2 (Differential and integral
	calculus in R ⁿ); Analytical geometry
4.2. competencies	• There are useful logical thinking and mathematical notions and
	results from the above mentioned fields
5. Conditions (if necessary)	
5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector

activities	

6. Specific competencies acquired

	• C1.1 Identification the notions, describing theories and using the specific language.
etencies	• C1.4 Recognition of main classes/types of mathematical problems and selecting the adequate methods and techniques for their solving.
comp	• C5.2 Using mathematical arguments to prove mathematical results.
ssional	• Ability to formulate and communicate orally and in writing ideas and concepts from complex analysis.
Profe	• Ability to use various specific methods of complex analysis to approach problems in other fields of mathematics.
	• CT1 Applying rigorous and effective work rules, manifest responsible attitude to science
es _	and teaching, and creative order to maximize their potential in specific situations, the
ersal	principles and rules of professional ethics.
unsv npet	• The student must have the ability to apply the studied notions and to formulate mathematical models
Tra	of concrete problems which appear in various fields of mathematics.

7. Objectives of the discipline (outcome of the acquired competencies)

 7.2 Specific objective of the discipline Acquiring basic knowledge of complex analysis. Knowledge of fundamental topological notions in the complex plane. Understanding and studying fundamental results in the theory of holomorphic functions of one complex variable. Acquiring basic knowledge of various elementary functions in the complex plane. Understanding and studying fundamental results related to the complex integral. Ability to compute complex integrals. Advanced knowledge on Taylor and Laurent series expansions. Ability to use specific methods of complex analysis to study some problems from other fields of mathematics and physiscs. 	7.1 General objective of the discipline	• Knowledge, understanding and use of fundamental concepts and results of complex analysis.
 Acquiring basic knowledge of complex analysis. Knowledge of fundamental topological notions in the complex plane. Understanding and studying fundamental results in the theory of holomorphic functions of one complex variable. Acquiring basic knowledge of various elementary functions in the complex plane. Understanding and studying fundamental results related to the complex integral. Ability to compute complex integrals. Advanced knowledge on Taylor and Laurent series expansions. Ability to compute various types of real integrals by using methods of complex analysis. Ability to use specific methods of complex analysis to study some problems from other fields of mathematics and physiscs. 	7.2 Specific objective of the	
r physical	discipline	 Acquiring basic knowledge of complex analysis. Knowledge of fundamental topological notions in the complex plane. Understanding and studying fundamental results in the theory of holomorphic functions of one complex variable. Acquiring basic knowledge of various elementary functions in the complex plane. Understanding and studying fundamental results related to the complex integral. Ability to compute complex integrals. Advanced knowledge on Taylor and Laurent series expansions. Ability to compute various types of real integrals by using methods of complex analysis. Ability to use specific methods of complex analysis to study some problems from other fields of mathematics and physiscs.

8. Content

8.1 Co	ourse	Teaching methods	Remarks
Part I			
1.	Complex numbers. The complex plane. The	Lectures, modeling,	
	stereographic projection. The extended complex	didactical demonstration,	
	plane.	conversation. Presentation	
		of alternative explanations.	
2.	The derivative of complex functions of one	Lectures, modeling,	
	complex variable. Paths in C. Fundamental	didactical demonstration,	

	notions and results.	conversation. Presentation of alternative explanations.	
3.	The Cauchy-Riemann theorem. Holomorphic	Lectures, modeling,	
	functions, General properties, Applications	didactical demonstration,	
	interiorist Concian properties. Trippireations.	conversation. Presentation	
		of alternative explanations.	
4.	Elementary functions. Harmonic functions.	Lectures, modeling,	
	Examples. Linear fractional transformations	didactical demonstration,	
	(Möbius transformations). General properties.	conversation. Presentation	
	Applications.	of alternative explanations.	
5.	Integration of complex functions. General	Lectures, modeling,	
	properties of the complex integral.	didactical demonstration,	
		conversation. Presentation	
		of alternative explanations.	
6.	Primitives (anti-derivatives) of complex functions	Lectures, modeling,	
	of one complex variable. Fundamental results.	didactical demonstration,	
		conversation. Presentation	
	~	of alternative explanations.	
7.	Cauchy's theorem. Applications.	Lectures, modeling,	
		didactical demonstration,	
		conversation. Presentation	
0		I alternative explanations.	
8.	Cauchy's formulas. Cauchy's inequalities.	Lectures, modeling,	
	Morera's and Liouville's theorems.	and actical demonstration,	
	Applications.	of alternative explanations	
0	Sequences of holomorphic functions	Lectures modeling	
).	Weierstrass' theorem Series of holomorphic	didactical demonstration	
	functions. Fundamental results	conversation. Presentation	
	functions. Fundamental results.	of alternative explanations.	
10	Power series. The Cauchy-Hadamard	Lectures, modeling,	
10	theorem The equivalence between analyticity	didactical demonstration,	
	and holomorphy	conversation. Presentation	
	und noromorphy.	of alternative explanations.	
11.	Zeros of holomorphic functions. The identity	Lectures, modeling,	
	theorem of holomorphic functions. The maximum	didactical demonstration,	
	modulus theorem. Schwarz's lemma.	conversation. Presentation	
		of alternative explanations.	
12.	Laurent series. Singular points. Classification of	Lectures, modeling,	
	isolated singularities. Meromorphic functions.	didactical demonstration,	
		conversation. Presentation	
		of alternative explanations.	
13.	The residue theorem. Applications to calculus of	Lectures, modeling,	
	complex integrals.	didactical demonstration,	
		conversation. Presentation	
		of alternative explanations.	
14.	Applications of residue theorem to the evaluation	Lectures, modeling,	
	of real integrals.	didactical demonstration,	
		conversation. Presentation	
		or alternative explanations.	

Bibliography

- 1. Hamburg, P., Mocanu, P.T., Negoescu, N., *Mathematical Analysis (Complex Functions)*, Editura Didactică și Pedagogică, București, 1982 (in Romanian).
- 2. Kohr, G., Complex Analysis, lecture notes (in Romanian), 2020.
- 3. Kohr, G., Mocanu, P.T., *Special Topics of Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).

- 4. Ahlfors, L.V., Complex Analysis, 3rd ed., McGraw-Hill Book Co., New York, 1979.
- 5. Bulboacă, T., Joshi, S.B., Goswami, P., *Complex Analysis. Theory and Applications*, de Gruyter, Berlin, Boston, 2019.
- 6. Conway, J.B., *Functions of One Complex Variable*, vol. I, Graduate Texts in Mathematics, Springer Verlag, New York, 1978 (Second Edition).
- 7. Gaşpar, D., Suciu, N., *Complex Analysis*, Publishing House of the Romanian Academy, Bucharest, 1999 (in Romanian).
- 8. Krantz, S., Handbook of Complex Variables, Birkhäuser Verlag, Boston, Basel, Berlin, 1999.
- 9. Narasimhan, R., Nievergelt, Y., Complex Analysis in One Variable, Second Edition, Birkhäuser, 1985.
- 10. Popa, E., Introduction in the Theory of Functions of One Complex Variable, A.I. Cuza Univ. Press, Iași, 2001 (in Romanian)
- 11. Rudin, W., Real and Complex Analysis, 3rd ed., Mc. Graw-Hill, 1987.
- 12. Stein, E.M., Shakarchi, R., Complex Analysis, Princeton University Press, 2003.

8.2 Se	minar	Teaching methods	Remarks
Part I		<u>_</u>	
1.	Properties of complex numbers. Applications.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
2.	The stereographic projection. The extended complex plane. Sequences of complex numbers.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
3.	Complex functions of one complex variable. Examples and applications.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
4.	The derivative of functions of one complex variable. Applications of the Cauchy- Riemann theorem. The geometric interpretation of the complex derivative.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
5.	Linear fractional transformations (Möbius transformations). Applications (I).	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
6.	Linear fractional transformations (Möbius transformations). Applications (II).	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
7.	Entire functions. Harmonic functions. Examples and applications.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
8.	The complex integral. Computation of elementary complex integrals. Applications of Cauchy's theorem.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
9.	Cauchy's formulas. Applications.	Description of arguments and proofs for solving problems. Direct answers to students.	

	Homework assignments.
10. Taylor series expansions.	Description of arguments and
	proofs for solving problems.
	Direct answers to students.
	Homework assignments.
11. Applications of Liouville's and maximum	Description of arguments and
modulus theorems for holomorphic functions.	proofs for solving problems.
	Direct answers to students.
	Homework assignments.
12. Laurent series expansions. Isolated singular	Description of arguments and
points. Examples and applications.	proofs for solving problems.
	Direct answers to students.
	Homework assignments.
13. Applications of Residue theorem to calculus	Description of arguments and
of complex integrals.	proofs for solving problems.
	Direct answers to students.
	Homework assignments.
14. Applications of Residue theorem to calculus	Description of arguments and
of real integrals.	proofs for solving problems.
	Direct answers to students.
	Homework assignments.
Bibliography	

- 1. Hamburg, P., Mocanu, P.T., Negoescu, N., *Mathematical Analysis (Complex Functions)*, Editura Didactică și Pedagogică, București, 1982 (in Romanian).
- 2. Kohr, G., Complex Analysis, seminar notes (in Romanian), 2020.
- 3. Kohr, G., Mocanu, P.T., *Special Topics of Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).
- 4. Berenstein, C.A., Gay, R., Complex Variables: An Introduction, Springer-Verlag New York Inc., 1991.
- 5. Bulboacă, T., Joshi, S.B., Goswami, P., *Complex Analysis. Theory and Applications*, de Gruyter, Berlin, Boston, 2019.
- 6. Conway, J.B., *Functions of One Complex Variable*, vol. I, Graduate Texts in Mathematics, Springer Verlag, New York, 1978 (Second Edition).
- 7. Popa, E., Introduction in the Theory of Functions of One Complex Variable, A.I. Cuza Univ. Press, Iași, 2001 (in Romanian)
- 8. Volkovysky, L., Lunts, G., Aramanovich, I., *Problems in the Theory of Functions of a Complex Variable*, Moscow: MIR Publishers, 1972.
- 9. Evgrafov, M., Bejanov, K., Sidorov, Y., Fedoruk, M., Chabounine, M., *Recueil de Problèmes sur la Théorie des Fonctions Analytiques*, Moscou: Editions Mir, 1974.
- 10. Mocanu, G., Stoian, G., Vişinescu, E., Function Theory of One Complex Variable (Textbook of Problems), Editura Didactică și Pedagogică, București, 1970 (in Romanian).
- 11. Sălăgean, G.S., Geometria Planului Complex, Promedia-Plus, Cluj-Napoca, 1997.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this course is in accordance with the curricula of the most important universities in Romania and abroad. This discipline is useful in preparing future teachers and researchers in mathematics,

as well as those who use various mathematical methods and techniques of study in other areas (physics, chemistry, engineering).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in
			the grade (%)
10.4 Course	Knowledge of concepts and	Written exam.	60%
	basic results.		
	Ability to justify by proofs		
	theoretical results.		
10.5 Seminar/lab	Ability to apply concepts	Evaluation of student activity	10%
activities	and results acquired at the	during the semester, and active	
	course in solving concrete	participation in the seminar	
	problems of complex	activity.	
	analysis		
	unury 515.	A midterm written test.	30%
	There are valid the official		
	rules of the faculty		
	concerning the attendance of		
	students to teaching		
	activities.		
10.6 Minimum performance standards			
The final grade should be at least 5 (from a scale of 1 to 10).			

Date

Signature of course coordinator

Signature of seminar coordinator

21.04.2022

Lecturer PhD Mihai IANCU

Lecturer PhD Mihai IANCU

Date of approval

Signature of the head of department

Professor Octavian AGRATINI