SYLLABUS

1. Information regarding the programme		
1.1 Higher education	Babeș-Bolyai University, Cluj-Napoca	
institution		
1.2 Faculty	Faculty of Mathematics and Computer Science	
1.3 Department	Department of Computer Science	
1.4 Field of study	Computer Science – Mathematics	
1.5 Study cycle	Bachelor	
1.6 Study programme /	Mathematics Computer Science	
Qualification		

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	discipl	ine (en)	Da	ata Structures			
(ro)	(ro)		St	Structuri de Date			
2.2 Course coordinator		Lect. PhD. Oneț-Marian Zsuzsanna					
2.3 Seminar coordinator		Le	Lect. PhD. Oneț-Marian Zsuzsanna				
2.4. Year of	1	2.5	2	2.6. Type of	С	2.7 Type of	Compulsory
study		Semester	evaluation discipline				
2.8 Code of the		MLE5105					
discipline							

3. Total estimated time (hours/semester of didactic activities)

of Total estimated time (notis/semester of addetic detrifies)					
3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					16
Preparation for seminars/labs, homework, papers, portfolios and essays					12
Tutorship					15
Evaluations					25
Other activities:					
3.7 Total individual study hours 108					
3.8 Total hours per semester 150					
3.9 Number of ECTS credits6					

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of programming
4.2. competencies	Medium programming skills

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

	te competencies acquirea
Professional competencies	C4.1. Definition of concepts and basic principles of computer science, and their mathematical models and theories.C4.3. Identification of adequate models and methods for solving real problemsC4.5. Adoption of formal models in specific applications from different domains
Transversal] competencies c	CT1. Apply rules to: organized and efficient work, responsibilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics CT3. Use efficient methods and techniques for learning, knowledge gaining, and research and
Trans comp	develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Study of data structures that can be used to implement abstract data types (arrays, linked lists, heaps, hash tables, binary trees).
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure libraries.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction. Data structures. Abstract	- Exposure	
Data Types	- Description	
• Data abstractization and encapsulation	- Examples	
Pseudocode conventions	- Didactical	
Complexities	demonstration	
2. Arrays. Iterators	- Exposure	
• Dynamic array	- Description	
Amortized analysis	- Conversation	
	- Didactical	

• Interface of an iterator	demonstration
3. Binary Heap	- Exposure
 Definition, representations, specific 	- Description
operations	- Conversation
1	- Didactical
• HeapSort	demonstration
4. Linked Lists	- Exposure
Singly linked list: representation and	- Description
operations	- Conversation
 Doubly linked list: representation and 	- Didactical
operations	demonstration
 Iterator for linked lists 	- Case study
5. Linked Lists II	- Exposure
	- Description
• Sorted linked lists: representation and operations	- Conversation
*	- Didactical
 Linked lists on arrays: representation and operations 	demonstration
6. Abstract Data Types	- Exposure
	- Description
• ADT Set: description, domain, interface and possible representations	- Conversation
1 1	- Didactical
• ADT Map: description, domain, interface and possible representations	demonstration
	demonstration
• ADT Matrix: description, domain,	
interface and possible representations	Exposure
7. Abstract Data Types II	- Exposure
• ADT List: description, domain,	- Description - Conversation
interface and possible representations	- Didactical
• ADT Stack: description, domain,	demonstration
interface and possible representations on arrays and linked lists	- Case studies
· · · · · · · · · · · · · · · · · · ·	
• ADT Queue: description, domain,	
interface and possible representations	
on arrays, circular arrays and linked lists.	
 Problems solved with stacks and 	
queues 8. ADT Priority Queue	- Exposure
 Description, domain, interface and 	- Description
possible representations on arrays,	- Conversation
linked lists and heaps	- Didactical
mixed fists and heaps	demonstration
	- Case studies
9. Hash Table	- Exposure
Direct address tables	- Description
 Hash tables: description, properties 	- Conversation
 Collision resolution through separate 	- Didactical
chaining	demonstration
10. Hash Table II	- Exposure
Collision resolution through coalesced	- Description
chaining	- Conversation
channing	

Collision resolution through open	- Didactical demonstration
addressing	demonstration
 Containers represented over hash 	
tables	
11. Trees	- Exposure
 Concepts related to trees 	- Description
• Applications of trees	- Conversation
Possible representations	- Didactical
Tree traversals	demonstration
12. Binary Trees	- Exposure
 Description, properties 	- Description
• Domain and interface of ADT Binary	- Conversation
Tree	- Didactical
• Tree traversals: recursive/non	demonstration
recursive algorithms.	
13. Binary Search Trees	- Exposure
Description, properties	- Description
Representation	- Conversation
•	- Didactical
Operations: recursive and non-	demonstration
recursive algorithms	demonstration
Containers represented over binary	
search tables	
14. Applications of the studied DS	- Conversation
	- Debate
Dibliggraphy	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

8.2 Seminar	Teaching methods	Remarks
		Seminar is structured as 2 hour classes every second week.
 ADT Bag with generic elements. Representations and implementations on an array. Iterator for ADT Bag 	 Exposure Conversation Examples Debate 	
2. Complexities	 Exposure Examples Debate Conversation 	
3. Sorted Multi Map – representation and implementation on a singly linked list.	 Exposure Examples Debate Conversation 	
4. Bucket sort, Lexicographic sort, radix sort. Merging two singly linked lists	- Exposure - Examples	

	- Debate - Conversation
 Hash tables. Collision resolution through coalesced chaining. 	 Exposure Examples Debate Conversation
6. Project presentation	- Project presentation
7. Binary Trees	 Exposure Examples Debate Conversation

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures and algorithms courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.1 Course	 Correctness and completeness of the assimilated knowledge Knowledge of applying the course concepts 	Written evaluation (in week 14): written exam	70%
10.2 Project	 Realization and presentation of a project, allocated in Seminar 3. C++ implementation of the concepts and algorithms presented at the lectures Respecting the deadlines for project 	Correctness of the documentation (specifications, algorithms, complexities) and implementation	30%

seminar (asking and answering questions, volunteering to solve a		presentation.		
problem, etc.)	10.3 Seminar	Seminar activity	discussions during the seminar (asking and answering questions,	points, added to the

10.4 Minimum performance standards

- Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.
- For participating at the written exam, a student must have at least 5 seminar attendances.
- For successfully passing the examination, a student must have at least 5 for the laboratory and as a final grade.

Date	Signature of course coordinator	Signature of seminar coordinator	
29.04.2021	Lect. PhD. Oneț-Marian Zsuzsanna	Lect. PhD. Onet-Marian Zsuzsanna	
Date of approval	Signa	Signature of the head of department	

Prof. PhD. Diosan Laura