SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education institution	Babeş-Bolyai University, Cluj-Napoca
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Licence
1.6 Study programme / Qualification	Mathematics and Computer Science

2. Information regarding the discipline

2.1 Name of the		Advanced	Advanced problem solving techniques in mathematics and informatics			nformatics	
discipline							
2.2 Course coordin	ator	·					
2.3 Seminar coordinator		T	rif Tiberiu-Vasile				
2.4 Year of study	1	2.5 Semester	2	2.6. Type of	Viva	2.7 Type of	facultative
				evaluation	voce	discipline	
2.8 Code of the		MLE200	2				
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	2	Of which: 3.2 course	0	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	28	Of which: 3.5 course	0	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					27
Tutorship					
Evaluation					
Other activities:					

3.7 Total individual study hours	47
3.8 Total hours per semester	75
3.9 Number of ECTS credits	3

4. Prerequisites (if necessary)

	,	
4.1 curriculum	Calculus 1 (Calculus in R)	
	Algebra 1 (Linear Algebra)	
4.2 competencies	Logical thinking abilities, problematisation	

5. Conditions (if necessary)

5.1 For the course	•
5.2 For the seminar/lab	•
activities	

6. Specific competencies aquired

Professional competencies	 C1.4 Recognizing the main classes /types of mathematical problems and selecting the appropriate methods and techniques for their solving C2.1 Identifying the basic notions used to describe some processes and phenomena
Transversal competencies	 CT1 Application of efficient and rigorous working rules, manifest responsible attitudes towards the scientific and didactic fields, respecting the professional and ethical principles. CT3 Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge acquiring, for adapting to the needs of a dynamic society and for communication in Romanian as well as in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Preparing students for mathematical competitions by acquiring advanced problem solving methods and techniques
7.2 Specific objectives of the discipline	 Presenting advanced problem solving methods and techniques applicable to mathematical contests for university students Problem solving sessions: presenting solutions to problems given in mathematical competitions for university students (Traian Lalescu, SEEMOUS, IMC, Putnam)

8. Content

8.1 Course	Teaching methods	Remarks
Bibliography		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Rank of a matrix, the Frobenius and the Sylvester inequalities, applications to solving contest problems	Lecture, discussion, problematisation	
2. Eigenvalues of certain special clases of matrices (Hermitian/symmetric matrices, skew Hermitian/skew symmetric matrices, unitary/ortogonal matrices), the characteristic polynomial, the Cayley-Hamilton theorem, the minimal polynomial, the Frobenius theorem, applications to solving contest problems	Lecture, discussion, problematisation	
3. Diagonalizable matrices, special clases of diagonalizable matrices (normal matrices, symmetric matrices), the spectral theorem for normal matrices, applications to solving contest problems	Lecture, discussion, problematisation	
4. Canonic forms, the unitary triangularization theorem of Schur, the Jordan canonic form theorem, applications to solving contest problems	Lecture, discussion, problematisation	
5. Dense sets on the real axis, the Dirichlet and the Kronecker theorems, applications to solving contest problems	Lecture, discussion, problematisation	
6. Perfect sets on the real axis, Cantor's set, applications to solving contest problems	Lecture, discussion, problematisation	

7. The Lagrange interpolation polynomial and applications to	Lecture, discussion,
solving contest problems	problematisation
8. The generating function method, nonlinear recurences,	Lecture, discussion,
applications to solving contest problems	problematisation
9. The Beta and Gamma functions, applications to solving	Lecture, discussion,
contest problems	problematisation
10. Passing to the limit under the integral sign (the uniform	Lecture, discussion,
convergence theorem, Arzelà's bounded convergence theorem,	problematisation
the dominated convergence theorem for improper Riemann	
integrals), applications to solving contest problems	
11+12. Solving some SEEMOUS problems	Lecture, discussion,
	problematisation
13+14. Solving problems from the "Traian Lalescu"	Lecture, discussion,
mathematical contest for university students	problematisation

Bibliography

- 1. AIGNER M.: Discrete Mathematics. American Mathematical Society, 2007
- 2. DE SOUZA P. N., SILVA J.-N.: Berkeley Problems in Mathematics. Third Edition. Springer, 2004
- 3. GELCA R., ANDREESCU T.: Putnam and Beyond. Springer, 2007
- 4. KEDLAYA K. S., POONEN B., VAKIL R.: The William Lowell Putnam Mathematical Competition 1985 2000. Problems, Solutions, and Commentary. The Mathematical Association of America, 2002
- 5. RĂDULESCU S., RĂDULESCU M.: Teoreme și probleme de analiză matematică. Editura Didactică și Pedagogică, București, 1982
- 6. YAGLOM A. M., YAGLOM I. M.: Challenging Mathematical Problems with Elementary Solutions. Dover, Vol. I 1964, Vol. II 1967
- 7. TRIF T.: Teme pentru perfecționarea profesorilor de matematică. Vol. 3. Analiză matematică. Casa Cărții de Știință, Cluj-Napoca, 2017
- 8. www.imc-math.org/
- 9. www.edumanager.ro/community/documente/concursuri_internationale_vol_1.pdf
- 10. www.edumanager.ro/community/documente/concursuri_internationale_vol_2.pdf

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the programme

• The advanced problem solving methods and techniques will be helpful to the future mathematics teacher in preparing his students for mathematical competitions

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in	
			grade	
10.4 Course				
10.5 Seminar/lab	Knowing some advanced problem	Solving problems during		
	solving methods and techniques	the semester	100%	
10.6 Minimum performance standards 5				

Date	Signature of course coordinato	r Signature of seminar coordinator
28.4.2022		
Date of approval	S	ignature of the head of departament