SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Geometrie 2		2 (Affine Geometry)					
(ro) Geometrie 2		2	(Geometrie afină)				
2.2 Course coordinator				Lect. Dr. Iulian Simion			
2.3 Seminar coordinator			Lect. Dr. Iulian Simion				
2.4 Year of study 1 2.5 Semester 2		2	,	2.6. Type of evaluation	VP	2.7 Type of	Compulsory
						discipline	
2.8 Disciplinei code MLE0015					•		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total hours in the curriculum 56		Of which: 3.5 course	28	3.6 seminar	28
Time allotment:					hours
Learning using manual, course support,	Learning using manual, course support, bibliography, course notes				
Additional documentation (in libraries, on electronic platforms, field documentation)				nentation)	20
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					15
Evaluations					3
Other activities:				1	
3.7 Total individual study hours 94					
3.8 Total hours per semester 150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1 curriculum	Basic knowledege in algebra and calculus
	 A first course on analytic geometry
4.2 competencies	

5. Conditions (if necessary)

5.1 for the course	
5.2 for the seminar /lab activities	

6. Specific competencies acquired

	me competencies acquired
ncies	C1.1 Idetifying the notions, describing the theories and using the specific language
Professional competencies	C2.3 Applying the adequate analytical theoretical methods to a given problem
Transversal competencies	CT1. Applying some rules of precise and efficient work, showing a responsible attitude regarding the the scientific domain and teaching training for an optimal and creative development of the personal potential in specific situations, respecting the deontological norms.

7. Objectives of the discipline (outcome of the acquired competencies)

		\ 1 1 /
7.1 General objective of the		Basic notions and methods în the context of affine geometry
discipline		
	7.2 Specific objective of the	Affine transformations
discipline		Classification of quadrics
		Projective transformations

8. Content

8.1 Course	Teaching methods	Remarks
1. Affine spaces	Exposition, proofs,	
Affine subspaces	examples	
• Convexity		
 An alternitive definition of affine spaces 		
2. Affine subspaces	Exposition, proofs,	
Parametric equations	examples	
Cartesian equations		
 Relative positions 		
3. Affine subspaces în dimension 2	Exposition, proofs,	
Affine lines	examples	
 Relative positions of lines 		

Pencils of lines		
Theorems of Thales, Pappus and		
Desargues		
4. Affine subspaces în dimension 3	Exposition, proofs,	
Affine lines and planes	examples	
Relative positions of lines and planes	1	
Pencils of planes		
5. Changing affine frames	Exposition, proofs,	
Linear maps and matrices	examples	
 Equations of affines subspaces în different 		
reference frames		
6. Affine maps	Exposition, proofs,	
 Projections on a hyperplane along a line 	examples	
 Projections on a line along a hyperplane 	_	
Reflections in a hyperplane		
7. Eigenvalues and eigenvectors	Exposition, proofs,	
Linear operators	examples	
Eigenvalues and eigenvectors		
Characteristic polynomial		
8. Bilinear and quadratic forms	Exposition, proofs,	
Bilinear forms	examples	
Quadratic forms		
Diagonalizing quadratic forms		
9. Euclidean spaces	Exposition, proofs,	
Euclidean spaces	examples	
• Isometries		
• Rotations		
Spectral Theorem		
10. Hyperquadrics	Exposition, proofs,	
 Reducing to canonical form 	examples	
Isometric classification		
 Affine classification 		
11-12. Quadratic surfaces	Exposition, proofs,	Two lectures
 Ellipsoid, cone, hyperboloid, paraboloid 	examples	
 Canonical equations 		
Tangent planes		
13-14. Projective Geometry	Exposition, proofs,	Two lectures
 Projective line, plane and space 	examples	
Projective transformations		
• Applications		
Ribliography		

Bibliography

- [1] E. Sernesi, Linear Algebra. A geometric Approach (Translated by J. Montaldi), 2009.
- [2] I. Simion, Geometry 2 material de curs, 2021.
- [3] P.A. Blaga, Geometrie material de curs, 2019.
- [4] M. Troyanov, Cours de géométrie, Lausanne, 2011.

8.2 Seminar	Teaching methods	Remarks
1. Affine spaces	Dialog, problem solving	
Affine subspaces		
• Convexity		
An alternitive definition of affine spaces		
2. Affine subspaces	Dialog, problem solving	
Parametric equations		
Cartesian equations		
Relative positions		
3. Affine subspaces în dimension 2	Dialog, problem solving	
Affine lines		
 Relative positions of lines 		
Pencils of lines		
Theorems of Thales, Pappus and		
Desargues		
4. Affine subspaces în dimension 3	Dialog, problem solving	
 Affine lines and planes 		
 Relative positions of lines and planes 		
 Pencils of planes 		
5. Changing affine frames	Dialog, problem solving	
 Linear maps and matrices 		
• Equations of affines subspaces în different		
reference frames		
6. Affine maps	Dialog, problem solving	
 Projections on a hyperplane along a line 		
 Projections on a line along a hyperplane 		
Reflections in a hyperplane		
7. Eigenvalues and eigenvectors	Dialog, problem solving	
Linear operators		
Eigenvalues and eigenvectors		
Characteristic polynomial		
8. Bilinear and quadratic forms	Dialog, problem solving	
Bilinear forms		
Quadratic forms		
Diagonalizing quadratic forms		
9. Euclidean spaces	Dialog, problem solving	
Euclidean spaces		
• Isometries		
• Rotations		
Spectral Theorem	D: 1	
10. Hyperquadrics	Dialog, problem solving	
Reducing to canonical form		
• Isometric classification		
Affine classification		

11-12. Quadratic surfaces	Dialog, problem solving	Two tutorials
Ellipsoid, cone, hyperboloid, paraboloid		
Canonical equations		
Tangent planes		
13-14. Projective Geometry	Dialog, problem solving	Two tutorials
 Projective line, plane and space 		
 Projective transformations 		
Applications		

Bibliography

- [1] E. Sernesi, Linear Algebra. A geometric Approach (Translated by J. Montaldi), 2009.
- [2] I. Simion, Geometry 2 material de curs, 2021.
- [3] P.A. Blaga, Geometrie material de curs, 2019.
- [4] M. Troyanov, Cours de géométrie, Lausanne, 2011.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The material of this course serves other courses
- a deeper understanding of linear algebra
- affine transformations are necessary examples for a group theory course
- quadrics are necessary examples in analysis courses
- coordinate changes, projections, affine and projective transformations are necessary for computer graphics
- Building on a previous geometry course, classification results are presented
- Applications of the theory are presented wherever appropriate

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the				
			grade (%)				
10.4 Course	Critical grasp of the	Two written partial exams	each 50%				
	learned material, ability to	at the middle and at the end					
	use what was learned	of the semester					
10.5 Seminar	Ability to use the theory	Points during the tutorial	Can lead up to one				
	for solving problems	for active participation	extra point for the				
			final grade				
10.6 Minimum performa	10.6 Minimum performance standards						
At least grade 5 f	or the final grade.						

Date	Signature of course coordinator	Signature of seminar coordinator	
12. February 2022	Lect. Dr. Iulian Simion	Lect. Dr. Iulian Simion	
Date of approval	Signature	Signature of the head of department	
	Prof.	Prof. Dr. Octavian Agratini	