SYLLABUS

1.1 Higher education
institutionBabeş Bolyai University1.2 FacultyFaculty of Mathematics and Computer Science1.3 DepartmentDepartment of Mathematics1.4 Field of studyMathematics1.5 Study cycleBachelor1.6 Study programme /
QualificationMathematics Computer Science

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline M			MI	ILE0070 Matematical Logic and Set Theory			
2.2 Course coordinator				prof. dr. Andrei Marcus			
2.3 Seminar coordinator				prof. dr. Andrei Marcus			
2.4. Year of	1	2.5	1	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2	
				seminar/laboratory		
3.4 Total hours in the curriculum		Of which: 3.5 course	28	3.6	28	
				seminar/laboratory		
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities:						
3.7 Total individual study hours 94						

5.7 Total marvidual study nours	74
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	- Profound knowledge of high school math, especially of the
	following topics:
	- elements of propozitional and predicate calculus
	- operations with sets
	- functions;
	- injectivity, surjectivity, bijectivity
	- number sets
	- divizibility in Z; primes;
	- modular arthmetic
	- counting arguments

4.2. competencies	- ability to perform symbolic calculations ability to operate with
	abstract concepts
	- ability to do logical deductions
	- ability to solve math problems based on aquired notions

5. Conditions (if necessary)

5.1. for the course	blackboard, projector
5.2. for the seminar /lab	• blackboard
activities	

6. Specific competencies acquired

Professional competencies	 C1.1 Identifying the notions, describing the theories and using the specific language. C2.3 Applying the adequate analytical theoretical methods to a given problem.
Transversal competencies	• CT1. Applying some rules of precise and efficient work, showing a responsible attitude regarding the scientific domain and teaching training for an optimal and creative development of the personal potential in specific situations, respecting the deontological norms.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Basic knowledge on First Order Logic, Set Theory, and Arithmetic. Ability to solve difficult problems
7.2 Specific objective of the discipline	 students will operate with fundamental concepts of logic, set theory and number theory students will aquire knowlegde first order predicates, relations, equivalence, cardinals and ordinals, number systems, divisibility, congruences, combinatorics. students solve problems, theoretical and practical, using instruments of modern mathematics.

8. Content

8.1 Course	Teaching methods	Remarks
Week 1. Propositional Logic. Formulas, truth values,	Explanation, dialogue,	
tautologies.	examples, proofs	
Week 2. Normal forms in propositional logic. First	Explanation, dialogue,	
order Logic. Predicates, quantifiers.	examples, proofs	
Week 3. Methods of mathematical proof.	Explanation, dialogue,	
Sets and operations with sets.	examples, proofs	
Week 4. Binary relations. Functions. Injective,	Explanation, dialogue,	
surjective, bijective functions.	examples, proofs	
Week 5. Equivalence relations and partitions, factor	Explanation, dialogue,	
sets, kernel of a function.	examples, proofs	
Week 6. Factorization of functions	Explanation, dialogue,	

	examples, proofs
Week 7. Ordered sets, lattices.	Explanation, dialogue,
	examples, proofs
Week 8. Boole algebras and Boole rings.	Explanation, dialogue,
	examples, proofs
Week 9. Axiomatic number theory. The Frege-Russell	Explanation, dialogue,
constructions and the Peano axioms	examples, proofs
Week 10. Construction of integers and rationals.	Explanation, dialogue,
	examples, proofs
Week 11. Cardinal numbers. Operations with cardinal	Explanation, dialogue,
numbers.	examples, proofs
Week 12. Ordering cardinal numbers. Finite,	Explanation, dialogue,
countable, infinite sets.	examples, proofs
Week 13. Elements of Combinatorics. Counting	Explanation, dialogue,
arguments.	examples, proofs
Week 14. Ordinal Numbers.	Explanation, dialogue,
	examples, proofs

Bibliography

[1] Marcus, A.: Logică și teoria mulțimilor, web notes 2015.

[2] Breaz, S.; Covaci, R.: *Elemente de logica, teoria multimilor si aritmetica*, Editura Fundatiei pentru Studii Europene, Cluj-Napoca, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
Week 1. Propositional Logic. Formulas, truth values,	Explanation, dialogue,	
tautologies.	examples, proofs	
Week 2. Normal forms in propositional logic. First	Explanation, dialogue,	
order Logic. Predicates, quantifiers.	examples, proofs	
Week 3. Methods of mathematical proof.	Explanation, dialogue,	
Sets and operations with sets.	examples, proofs	
Week 4. Binary relations. Functions. Injective,	Explanation, dialogue,	
surjective, bijective functions.	examples, proofs	
Week 5. Equivalence relations and partitions, factor	Explanation, dialogue,	
sets, kernel of a function.	examples, proofs	
Week 6. Factorization of functions	Explanation, dialogue,	
	examples, proofs	
Week 7. Ordered sets, lattices.	Explanation, dialogue,	
	examples, proofs	
Week 8. Boole algebras and Boole rings.	Explanation, dialogue,	
	examples, proofs	
Week 9. Axiomatic number theory. The Frege-Russell	Explanation, dialogue,	
constructions and the Peano axioms	examples, proofs	
Week 10. Construction of integers and rationals.	Explanation, dialogue,	
	examples, proofs	
Week 11. Cardinal numbers. Operations with cardinal	Explanation, dialogue,	
numbers.	examples, proofs	
Week 12. Ordering cardinal numbers. Finite,	Explanation, dialogue,	
countable, infinite sets.	examples, proofs	
Week 13. Elements of Combinatorics. Counting	Explanation, dialogue,	
arguments.	examples, proofs	
Week 14. Ordinal Numbers.	Explanation, dialogue,	
	examples, proofs	
Bibliography		

- 1. Epp, S.: Discrete Mathematics with Applications. 4th ed. Brooks/Cole, Boston, 2011.
- 2. Krantz, S. G.: Discrete Mathematics Demystified. McGraw-Hill, New York, 2009.
- 3. Levy, A.: Basic Set Theory. Dover Publications, New York, 1979.
- 4. Lidl, R., Pilz, G.: Applied Abstract Algebra. Springer-Verlag, Berlin, 1998.

5. Ross, K. A., Wright Ch., Discrete Mathematics. Pearson Education, New Jersey, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Such a course (often called Discrete Mathematics) exists in the curricula of all major universities in Romania and abroad.
- Mathematical Logic and Number Theory are fundamental topics and have multiple applications in other branches of mathematics, as well as in Computer Science and in Philosophy.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	 know the basic principles of the field. apply the new concepts.	- Two written tests	80%			
10.5 Seminar/lab activities	- problem solving	- homeworks	20%			
10.6 Minimum performance standards						
to aquire minimum 5 (out of 10) points to pass the exam						

Date	Signature of course coordinator	Signature of seminar coordinator
14.05.2022	Prof.dr. Andrei Mărcus	Prof.dr. Andrei Mărcus

Date of approval

Signature of the head of department

.....

Prof. dr. Octavian Agratini