1. Information regarding the programme

1.1 Higher education institution	Babes-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Departament of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Mathematics-Computer Science

2. Information regarding the discipline

2.1 Name of the discipline			Algebra 1 (Linear Algebra)				
2.2 Course c	ina		Assistant Professor PhD. Cosmin Pelea				
2.3 Seminar coordinator			Assistant Professor PhD. Cosmin Pelea				
2.4. Year of study	1	2.5 S	1	2.6. Type of evaluation	E	2.7 Type of discipline	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week		4	Of which: 3.2 course	2	3.3 seminar/laborator	2
3.4 Total hours in the curriculum		56	Of which: 3.5 course	28	$\begin{aligned} & \hline 3.6 \\ & \text { seminar/laboratory } \end{aligned}$	28
Time allotment:						hours
Learning using manual, course support, bibliography, course notes						28
Additional documentation (in libraries, on electronic platforms, field documentation)						20
Preparation for seminars/labs, homework, papers, portfolios and essays						28
Tutorship						14
Evaluations						4
Other activities:						-
3.7 Total individual study hours			94			
3.8 Total hours per semester	150					
3.9 Number of ECTS credits	6					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2 . competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6. Specific competencies acquired

Cler	C1.1 Idetifying the notions, describing the theories and using the specific language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To introduce the basic notions of linear algebra.
7.2 Specific objective of the discipline	\squareTo introduce some basic results on vector spaces, matrices, systems of linear equations, eigenvalues, eigenvectors and quadratic forms.

8. Content

8.1 Course	Teaching methods	Remarks
1. Groups. Rings. Fields.	\square Interactive exposure \square Explanation \square Conversation \square Didactical demonstration	
2. Polynomial rings. Matrix rings	\square Interactive exposure \square Explanation \square Conversation \square Didactical demonstration	
3. Determinants. The inverse of a matrix	\square Interactive exposure \square Explanation \square Conversation \square Didactical demonstration	

$\left.\begin{array}{|l|l|l|}\hline \text { 4. The rank of a matrix. Systems of linear equations } & \square \text { Interactive exposure } & \\ & \square \text { Explanation } \\ \square \text { Conversation } \\ \square \text { Didactical demonstration }\end{array}\right]$
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { 4. W. K. NICHOLSON, Linear Algebra and Applications, } \\ \text { https://lila1.lyryx.com/textbooks/OPEN_LAWA_1/marketing/Nicholson-OpenLAWA-2021A.pdf } \\ \text { 5. I. PURDEA, I. POP, Algebra, Editura GIL, Zalau, 2003. }\end{array} \\ \hline \text { 8.2 Seminar / laboratory } & \text { Teaching methods } & \text { Remarks } \\ \hline \text { 1. Groups. Rings. Fields. Review. } & \square \text { Interactive exposure } & \\ & \square \text { Explanation } \\ & \square \text { Conversation } \\ \square \text { Didactical demonstration }\end{array}\right]$

12. Matrices and linear maps	Interactive exposure Explanation Conversation Didactical demonstration	
13. Eigenvectors and eigenvalues. Diagonalisable matrices. Hamilton-Cayley Theorem	\square Interactive exposure \square Explanation \square Conversation \square Didactical demonstration	
14. Bilinear and quadratic forms.	\square Interactive exposure \square Explanation \square Conversation \square Didactical demonstration	
Bibliography 1. I.D. ION, N. RADU, Algebra (ed.4), Editura Didactica si Pedagogica, 1990. 2. I.D. ION, C. NITA, D. POPESCU, N. RADU: Probleme de algebra, Editura Didactica si Pedagogica, Bucuresti, 1981. 3. C. NASTASESCU, I. STANESCU, C. NITA, Matematica, Elemente de algebra superioara, Editura Didactica si Pedagogica, Bucuresti, 1995. 4. W. K. NICHOLSON, Linear Algebra and Applications, Lyryx Version, https://lila1.lyryx.com/textbooks/OPEN_LAWA_1/marketing/Nicholson-OpenLAWA-2021A.pdf 5. I. PURDEA, C. PELEA, Probleme de algebra, EIKON, Cluj-Napoca, 2008.		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course presents notions which often appear in other undergraduate courses.
\square The course offers a sufficiently general background for some highschool algebra topics and the opportunity to develop some problem solving skills useful for further teaching activities.
10. Evaluation

10.4 Course	Knowledge of basic concepts	Test	25\%
	Knowledge of basic results	Final exam.	25\%
10.5 Seminar/laborator	Examples and problem solving	Final exam.	50\%
10.6 Minimum performance standards			
The final grade must be at least 5 .			
Date	Signature of course coordinator		of sem
19.04.2022	Assist. Prof. PhD. Cosmin Pelea		f. PhD

Date of approval
Signature of the head of department
Prof.PhD. Octavian AGRATINI

