SYLLABUS

it into mation regarang the l	
1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science (English)
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		Geometrie I (Geometrie Analitică)/Analytic Geometry				
(ro)						
2.2 Course coordinator			Lect. dr. George Țurcaș			
2.3 Seminar coordinator		Le	Lect. dr. George Țurcaș			
2.4. Year of study I	2.5 Semester	1	2.6. Type of evaluation	Ε	2.7 Type of discipline	Compulsory
2.8 Code of the discipline	MLE0013		•			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:				·	hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship				14	
Evaluations					10
Other activities: homework				10	
3.7 Total individual study hours		94			
3.8 Total hours per semester		150			
3.9 Number of ECTS credits		6			

4. Prerequisites (if necessary)

4.1. curriculum	None necessary
-----------------	----------------

4.2. competencies	Basic knowledge of algebra, trigonometry and elementary
	geometry

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar	• Attendance to at least 75% of the seminars.

6. Specific competencies acquired

	competencies acquired
Professional competencies	 C1.1 The ability to identify concepts, theories and use of specific description language C2.1 The ability to identify basic concepts used in the description of specific phenomena and processes C4.5 The ability to produce a mathematical model for a certain problem.
Transversal competencies	CT1. Applying rigorous and efficient work rules, displaying a responsible attitude towards the scientific and educational and creative order to maximize their potential in specific situations with respect to the basic principles and norms of professional ethics

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquiring theoretical and practical knowledge necessary for understanding the principles and methods of analytic geometry.
7.2 Specific objective of the discipline	• Introduction of basic notions for analytic geometry (vectors, coordinates, straight lines, planes, conic sections and quadric surfaces), the study of their properties and of the relations between them, by means of the geometric transformations.

8. Content

8.1 Course	Teaching methods	Remarks
1. Vector algebra and coordinates (3 lectures)	Lecture, description,	
	exemplifications by	
	using multimedia	
	tools	
2. The straight line in the plane (1 lecture)	Lecture, description,	
	exemplifications by	
	using multimedia	
	tools	
3. The line and plane in space (2 lectures)	Lecture, description,	
	exemplifications by	

	using multimedia
	tools
4. Isometries and affine transformations in the	Lecture, description,
plane (2 lectures)	exemplifications by
	using multimedia
	tools
5. Conic sections. Reduction to the canonical	Lecture, description,
equation (3 lectures)	exemplifications by
	using multimedia
	tools
6. Quadric surfaces on the canonical equations	Lecture, description,
(1 lecture)	exemplifications by
	using multimedia
	tools
7. Generated surfaces (1 lecture)	Lecture, description,
	exemplifications by
	using multimedia
	tools
8. Isometries and affine transformations in space	Lecture, description,
(1 lectures)	exemplifications by
	using multimedia
	tools

Bibliography

1. D. Andrica, L. Topan - Analytic Geometry, Cluj University Press, 2004 (main textbook)

2. M. Audin - Geometry, Springer, 2003

3. M. Berger - Geometry (vol. I and II), Springer, 1987

4. P.A. Blaga – Geometrie si grafica I (lecture notes available on the author website)

5. P. A. Blaga - Lectures on Classical Differential Geometry, Risoprint, 2005

6. M. P. Deisenroth, A. A. Faisal, C. S. Ong - *Mathematics for Machine Learning*, Cambridge University Press, 2020.

7. D.F. Rogers, J.A. Adams - Mathematical Elements for Computer Graphics (2nd edition), McGraw-Hill, 1990

8. C. Pintea - Geometrie. Elemente de geometrie analitca. Elemente de Geometrie diferențială a curbelor și suprafețelor, Cluj University Press, 2001.

9. M. Reid, B. Szendroi- Geometry and Topology, Cambridge University Press, 2005.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Vector algebra and coordinates (3 seminars)	Description,	
	explanation,	
	independent and/or	
	team study	
2. The straight line in the plane (1 seminar)	Description,	
	explanation,	
	independent and/or	
	team study	
3. The line and plane in space (2 seminars)	Description,	
	explanation,	
	independent and/or	
	team study	

 Isometries and affine transformations in the plane (2 seminars) 	Description, explanation, independent and/or team study
5. Conic sections. Reduction to the canonical equation (3 seminars)	Description, explanation, independent and/or team study
6. Quadric surfaces (1 seminar)	Description, explanation, independent and/or team study
7. Generated surfaces (1 seminar)	Description, explanation, independent and/or team study
8. Isometries and affine transformations in space (1 seminars)	Description, explanation, independent and/or team study

Bibliography

1. S.L. Atanasijan, V. I. Glizburg – Culegere de probleme de geometrie, vol. I, Eksmo Education, Moscova, 2000 (in Russian)

2. C. Coșniță - Culegere de probleme de geometrie analitică, Editura didactică și pedagogică, 1963

3. D. Kletenik - Problems in Analytic Geometry, Mir Publishers, Moscow, 1969

3. C. Ionescu-Bujor, O. Sacter - Exerciții și probleme de geometrie analitică și diferențială, volumul I,Editura didactică și pedagogică, 1963

4. F. Rado - Culegere de probleme de geometrie, Lito UBB, 1979

5. D. Brannan, M. Esplen – Geometry, Cambridge University Press, Second Edition 2011

5. Ion D. Teodorescu - Geometrie analitică și elemente de algebră liniară, culegere de probleme (ediția a IIa), Editura didactică și pedagogică, 1971

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The notions assimilated are essential for any prospective mathematician or math teacher. Moreover, these competencies are very useful in activities related to computer graphics, computer aided geometric design or machine learning.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course		Final written exam	75%
10.5 Seminar/lab activities		Active attendance and seminar test	25%

10.6 Minimum performance standards				
The student should attend at least 75% of the seminaries.				
The grade of the written exam should be at least 5.				

Date

Signature of course coordinator

April 29, 2022

Lect. dr. George Țurcaș

ton

Date of approval

April 29, 2022

Signature of seminar coordinator

Lect. dr. George Țurcaș

tron <

Signature of the head of department

Prof. dr. Octavian Agratini