SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeş-Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Mathematics			
1.4 Field of study	Mathematics			
1.5 Study cycle	Master			
1.6 Study programme /	Advanced Mathematics			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline St				ochastic Models			
2.2 Course coordinator				Assoc. Prof. PhD Habil. Hannelore Lisei			
2.3 Seminar coordinator				Assoc. Prof. PhD Habil. Hannelore Lisei			
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week3Of which: 3.2 course23.3				3.3	1	
seminar/laboratory						
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12	
	seminar/laboratory					
Time allotment:					hours	
Learning using manual, course suppor	t, bib	liography, course notes	8		60	
Additional documentation (in libraries	, on	electronic platforms, fie	eld do	cumentation)	50	
Preparation for seminars/labs, homewo	ork, j	papers, portfolios and e	ssays		40	
Tutorship					19	
Evaluations					20	
Other activities:					0	
3.7 Total individual study hours 189						
3.8 Total hours per semester 225						

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Mathematical Analysis, Algebra, Probability Theory
4.2. competencies	Logical thinking

9

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector

activities						
------------	--	--	--	--	--	--

6. Specific competencies acquired

P	te competencies acquireu
Professional competencies	Identifying the models and adequate methods for solving problems Ability to understand and manipulate advanced concepts, results and theories in the fields of mathematics.
Transversal competencies	Ability to use acquired and complementary knowledge in preparing a PhD in Mathematics, Applied Mathematics, or other fields which use mathematical methods.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The course aims deepening the basic notions of Stochastics, followed by their applicative side and their practical interpretation.
7.2 Specific objective of the discipline	 Monte Carlo methods Stochastic processes and their applications Brownian motion and applications Markov chains

8. Content

8.1 Course	Teaching methods	Remarks
1. Review of the basic notions of Probability Theory, conditional probabilities; discrete and continuous random variables	Lecture, description, explanation	
2. Stochastic processes; examples	Exposure, description, explanation, examples	
3. Random walks (on the line, in the plane, in the space)	Exposure, description, explanation, examples	
4. Discrete time Markov chains	Exposure, description, explanation, proof	
5. Multivariate normal distribution	Exposure, description, explanation, examples	
6. Continuous time Markov chains	Exposure, description, explanation, proof	
7. Stationary processes	Exposure, description, explanation, proof, examples	
8. Gaussian processes	Exposure, description, explanation, proof	
9. The Brownian motion (I)	Exposure, description, explanation, proof	
10. The Brownian motion (II)	Exposure, description,	

	explanation, proof
11. Linear and quadratic variation of the Brownian	Exposure, description,
motion	explanation, proof
12. The Poisson process	Exposure, description,
	explanation, proof

Bibliography

Blaga, P., Radulescu, M., Calculul probabilitatilor, Universitatea "Babes-Bolyai" Cluj-Napoca, 1987.

Ciucu G., Tudor C., Probabilitati și Procese Stocastice. Vol.I, Vol.II., Edit. Acad. 1978, 1979.

Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, Springer Verlag, New York, 2005.

Lisei, H., Probability Theory, Casa Cărții de Știință, Cluj-Napoca, 2004.

Lisei, H., Grecksch, W., Iancu, M., Probability: Theory, Examples, Problems, Simulations. World Scientific Publishing, Singapore, 2020.

Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, Cluj-Napoca, 2006.

Morariu, C. O., Probabilități și statistică aplicată, Editura Universității "Transilvania", Brașov, 2010.

Ross, S.M., Simulation, Academic Press, 2013.

8.2 Seminar / laboratory	Teaching methods	Remarks
S1. Generation of random numbers	Presentation,	The seminar is structured
	discussion	as 2 hours classes every
		second week
S2. Random walks (on the line, in the plane, in the	Presentation, individual	
space)	work	
S3. Markov chains (discrete time)	Presentation, individual	
	work	
S4. Markov chains (continuous time)	Discussion, group-	
	based work, modelling	
S5. Brownian motion	Discussion, group-	
	based work, modelling	
S6. Poisson process	Discussion, group-	
	based work, modelling,	
	simulation	

Bibliography

P. Blaga, Statistică prin Matlab, Presa Univ. Clujeană, 2002.

Gorunescu, F., Modelare stochastică și simulare, Editura Albastră, 2001.

Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, Springer Verlag, New York, 2005.

Lisei, H., Probability Theory, Casa Cărții de Știință, Cluj-Napoca, 2004.

Lisei, H., Grecksch, W., Iancu, M., Probability: Theory, Examples, Problems, Simulations. World Scientific Publishing, Singapore, 2020.

Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, Cluj-Napoca, 2006.

Morariu, C. O., Probabilități și statistică aplicată, Editura Universității "Transilvania", Brașov, 2010.

Ross, S.M., Simulation, Academic Press, 2013.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where advanced mathematics and its applications play an essential role.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course Knowledge of main concepts presented in the course Written exam 60%					
10.5 Seminar/lab activitiesTo be able to solve specific problems-Practical examination -presentation -continuous observations40%					
10.6 Minimum performance standards					
At least grade 5 (from a scale of 1 to 10) at the written exam. The student should be able to perform specific reasoning, to use stochastic methods, to give examples of Markov chains, to list properties of the Brownian motion.					

Date	Signature of course coordinator	Signature of seminar coordinator
28.04.2022	Assoc. Prof. PhD Habil. Hannelore Lisei	Assoc. Prof. PhD Habil. Hannelore Lisei

Date of approval

Signature of the head of department

Prof. Dr. Octavian Agratini