SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Master of Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Reaction-diffusion systems							
2.2 Course coordinator Prof. Ph.D. Radu Precup							
2.3 Seminar coordinator				Prof. Ph.D. Radu Precup			
2.4. Year of	2	2.5	2	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					54
Additional documentation (in libraries, on electronic platforms, field documentation)					52
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					18
Evaluations					15
Other activities:				10	
27 m + 1: 1: 1 1 + 1 1		100			

3.7 Total individual study hours	189
3.8 Total hours per semester	225
3.9 Number of ECTS credits	9

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	 Partial differential equations; functional analysis
5.2. for the seminar /lab	 Partial differential equations; functional analysis
activities	

6. Specific competencies acquired

or Special	c competences acquired
nal	Apply basic theory of linear partial differential equations to semilinear evolution equations;
etenc	Use of the fundamental principles of nonlinear functional analysis.
Professional competencies	Understanding Turing theory of pattern formation
	Understand the role of partial differential equations in mathematical modelling of real
al ies	phenomena
ersa	•
sve	
Transversal competencies	
E 3	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquire knowledge about some main techniques of investigation of nonlinear boundary value problems for evolution equations
	 Understanding Turing theory of pattern formation
7.2 Specific objective of the	Rewrite boundary value problems as operator equations
discipline	 Apply general fixed point principles to the operator equations
	associated to boundary value problems

8. Content

8.1 Course	Teaching methods Remarks
1. Summary basic notions and results from the	Exposure:
theory of linear partial differential equations	description,
	explanation,
	dialogue, examples
2. Fourier series in H ⁻ {-1}	Exposure:
	description,
	explanation,
	dialogue, examples
3. The nonhomogeneous heat equation	Exposure:
	description,
	explanation,
	dialogue, examples
4. Applications of Banach's, Schauder's and	Exposure:
Leray-Schauder's fixed point theorems	description,
	explanation,
	dialogue, examples
5. The nonhomogeneous wave equation	Exposure:
	description,
	explanation,
	dialogue, examples
6. Applications of Banach's and Schauder's fixed	Exposure:
point theorems	description,
	explanation,
	dialogue, examples
7. The nonhomogeneous Schrodinger equation	Exposure:
	description,

	explanation,
	dialogue, examples
8. Vector approach to systems of evolution	Exposure:
equations	description,
	explanation,
	dialogue, examples
9. The Turing Mechanism; Some examples	Exposure:
	description,
	explanation,
	dialogue, examples
10. Turing instability	Exposure:
	description,
	explanation,
	dialogue, examples
11. Biological pattern formation	Exposure:
	description,
	explanation,
	dialogue, illustrations
12. Some open problems and new research	Exposure:
directions	description,
	explanation

Bibliography

- 1. R. Precup, Lectii de ecuatii cu derivate partiale, Presa Universitara Clujeana, 2004.
- 2. R. Precup, Linear and Semilinear Partial Differential Equations, De Gruyter, 2012.
- 3. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
- 4. J. Jost, Partial Differential Equations, Springer, 2007.
- 5. J. Murray, Mathematical Biology, Springer, 1989.

8.2 Seminar / laboratory	Teaching methods	Remarks
Some mathematical models given by evolution	Exercise,	
equations	explanation, dialogue	
2. Eigenvalues and eigenfunctions	Exercise,	
	explanation,	
	dialogue, team work	
3. Several types of nonlinearities in semilinear	Exercise,	
evolution equations	explanation, dialogue	
4. The heat equation; maximum principles	Exercise,	
	explanation,	
	dialogue, team work	
5. Semigroup theory	Exercise,	
	explanation,	
	dialogue, team work	
6. Hyperbolic equation; propagation of	Exercise,	
disturbances	explanation, dialogue	
7. Symmetric hyperbolic systems	Exercise,	
	explanation,	
	dialogue, team work	
8. Traveling waves	Exercise,	
	explanation,	
	dialogue, team work	

9. Entropy and vanishing viscosity	Exercise,
	explanation, dialogue
10. Student exposure	Exposure, discussion
11. Student exposure	Exposure, discussion
12. Student exposure	Exposure, discussion

Bibliography

- 1. R. Precup, Lectii de ecuatii cu derivate partiale, Presa Universitara Clujeana, 2004.
- 2. R. Precup, Linear and Semilinear Partial Differential Equations, De Gruyter, 2012.
- 3. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
- 4. J. Jost, Partial Differential Equations, Springer, 2007.
- 5. L.C. Evans, Partial Differential Equations, AMS, 1998.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The contents of the course correspond to current research themes in nonlinear boundary value problems and make connexion to mathematical evolution models from physics, biology, medicine etc.

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
,			grade (%)
10.4 Course		Written test	60%
		Continuous observations	10%
10.5 Seminar/lab activities		-Practical examination	20%
		-continous observations	10%

10.6 Minimum performance standards

- Application of the fixed point technique to evolution problems
- Understanding of the Turing mechanism

Date Signature of course coordinator Signature of seminar coordinator

May 10, 2022 Prof.PhD. Radu Precup Prof.PhD. Radu Precup

Date of approval Signature of the head of department

May 18, 2022 Prof.PhD. Octavian Agratini