SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Big Data Processing and Applications					
(ro)							
2.2 Course coordinator			Lect. Dr. Ioana-Georgiana Ciuciu				
2.3 Seminar coordinator		Lect. Dr. Ioana-Georgiana Ciuciu					
2.4. Year of study	2	2.5 Semester	3	2.6. Type of evaluation	E	2.7 Type of discipline	Optional
2.8 Code of the discipline		MME8158					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					35
Additional documentation (in libraries, on electronic platforms, field documentation)					45
Preparation for seminars/labs, homework, papers, portfolios and essays				47	
Tutorship					15
Evaluations				16	
Other activities:				-	
0.7.5 . 11 11 1 1 1 1		110			1

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Basic knowledge of data analytics, preferably

Basic knowledge of data visualization, preferably
Programming skills

5. Conditions (if necessary)

5.1. for the course	Room with video projector	
5.2. for the seminar /lab	 Room with computers as needed; 	
activities	 Big Data software installed 	
	High level programming language environment	

6. Specific competencies acquired

or Specific	competencies acquired
	• Use of non-traditional databases for storing and processing large amounts of data
Professional competencies	Advanced querying over distributed information resources
Professional competencie	Evaluation, testing and validation with real-world data
P _O	Learning to conduct incipient research in the field of Big Data
	Methods and algorithms for data processing and analysis applied to Big Data
petencies	 Multidisciplinary competencies spanning various application sectors (e.g., life sciences and bioinformatics, telco, media, finance, security, health, energy, etc.)
Transversal competencies	• Data Science competencies, combining data analyst and data engineer- specific competencies (e.g., competencies from the fields of mathematics, statistics, information science, computer science, databases, machine learning, data mining, visualization, etc.)
Trans	Manifest responsible attitudes towards the scientific and didactic fields

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Handling (extremely) large amounts of digital data in various formats (text, video, financial, medical, etc.)
7.2 Specific objective of the discipline	 Enable the use of novel algorithms, software infrastructures and methodologies for the purpose of processing (store, retrieve, analyze) large amounts of data Provide decision support over large volumes of data Enable the creation of applications and services for various business domains based on the results of big data analysis.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Data Science and Big	Exposure, description,	Data Science main concepts,
Data	explanation, examples,	the Data Science Process,

	case studies	challenges, data availability, data types, tools
Industrial Standards for Data Mining Projects	Exposure, description, explanation, examples, case studies	Methodology for Data Science projects (CRISP-DM)
3. Big Data Architecture	Exposure, description, explanation, examples, case studies	Traditional database systems versus Big Data systems, the Lambda Architecture, a model for building a Big Data system, case studies and examples
4. Batch Layer	Exposure, description, explanation, examples, case studies	Big Data storage, data model for Big Data, batch computing, the Hadoop Ecosystem
5. Serving Layer - part I	Exposure, description, explanation, examples, case studies	Requirements, performance metrics, the normalization/denormalization
6. Serving Layer - part II	Exposure, description, explanation, examples, case studies	problem, tools
7. Speed Layer - part I	Exposure, description, explanation, examples, case studies	Computing and storing of real time views, real time updates, tools
8. Speed Layer - part II	Exposure, description, explanation, examples, case studies	
9. Data Ingestion	Exposure, description, explanation, examples, case studies	Definitions and design considerations, batch ingestion, real time ingestion, tools
10. NoSQL Solutions for Big Data	Exposure, description, explanation, examples, case studies	NoSQL databases, NoSQL Data Models Tutorial provided
11. Data Visualization	Exposure, description, explanation, examples, case studies	Scientific data visualization principles, visual analytics for exploratory data analysis
12. Big Data Case Studies	Exposure, description, explanation, examples, case studies	Presentation of Big Data (industrial) case studies
13. Big Data Research Essays Presentation	Exposure, description, explanation, examples, case studies	Student essay presentation
14. Big Data Research Essays Presentation	Exposure, description, explanation, examples, case studies	Student essay presentation

Bibliography

Marz, N., & Warren, J. (2015). *Big Data. Principles and Best Practices of scalable real-time systems*. Manning Publications

Cielen, D., Meysman, A.D.B., & Ali, M. (2016). *Introducing Data Science. Big Data, machine learning, and more, using Python tools*. Manning Publications

Grus, J. (2019). Data Science from Scratch: First Principles with Python. O'Reilly Media, Inc.

Damji, J.S., Wenig, B., Das, T., & Lee, D. (2020). Learning Spark. O'Reilly Media, Inc.

Sadalage, P., Fowler, M. (2013). *NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence*. Pearson Education, Inc.

Agneeswaran, V. (2014). Big Data Analytics Beyond Hadoop. Pearson Education

White, T. (2009). Hadoop: The Definitive Guide. O'Reilly

McCallum, Q. E. (2012). *Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work*. O'Reilly

8.2 Seminar / laboratory	Teaching methods	Remarks
Semester project organized with groups of	Research-informed	Groups will be monitored via
about 2-3 students (depending on the	Learning	a project wiki managed with
requirements and the equipment needed)		the course/lab the responsible
	Tutorial-based	
Team work will be autonomous (focus on		The lab takes place every two
creativity and critical thinking)	Problem-solving	weeks and takes two hours
	approach	
Technical tutorials will be provided to support		
student work around the most important aspects	Team work	
of Big Data storage and processing (e.g.,		
Hadoop shell, PySpark, Data Ingestion with	Big Data solutions for	
Apache Sqoop, NoSQL, etc.)	concrete problems and	
	case studies	
Bibliography		
Same as for the course		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Synergies with various local and EU initiatives: local industry, European Data Science Academy (EDSA, https://edsa-project.eu/), EU projects such as LETHE (https://cordis.europa.eu/project/id/853566), the Human Brain Project (https://cordis.europa.eu/project.eu/en/), SoBigData (https://project.sobigdata.eu/), etc.

Collaboration with the IT industry: invited lectures with real-life use cases, semester project topics, equipment (e.g., smart sensors).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 to be familiar with the main concepts of the domain to be able to model a problem from a specific application field relying on emergent Big Data technologies to be able to apply these principles in real-life use cases 	Written exam/ Evaluation of a research essay	50%
10.5 Seminar/lab activities	 to be able to propose viable creative solutions to real-life big data challenges from various application domains to be able to consume (query, analyze)Big Data in order to derive information relevant to use cases from various application domains to demonstrate critical thinking to successfully perform individual and team-based tasks 	Semester project	50%

10.6 Minimum performance standards

- A minimum grade of 5 (on a scale from 1 to 10) is necessary for the written exam, the practical work and the research essay
- The lab attendance is compulsory at a rate of 90%, according to the decision of the Computer Science Department Council (http://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-15.03.2017.pdf)

Date	Signature of course coordinator	Signature of seminar coordinator	
30 April 2022	Lect. Dr. Ioana-Georgiana Ciuciu	Lect. Dr. Ioana-Georgiana Ciuciu	
Date of approval	Signature of the head of department		
	Prof. Dr. Laura Diosan		