syllabus

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software Engineering
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disc	cipline		De	cision Support Syste	ms		
2.2 Course coordina	tor		Leo	ct. PhD. Radu D. Găc	eanu		
2.3 Seminar coordin	ator		Leo	ct. PhD. Radu D. Găc	eanu		
2.4. Year of study	2	2.5 Semester	3	2.6. Type of evaluation	E	2.7 Type of discipline	Optional

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per we	ek	4	Of which: 3.	2 course	2	3.3 seminar/laboratory	1 sem
							+ 1 pr
3.4 Total hours in	the curriculum	56	Of which: 3.	.5 course	28	3.6 seminar/laboratory	28
Time allotment:							hours
Learning using m	nanual, course support,	biblio	graphy, course	e notes			28
Additional docur	nentation (in libraries, o	on elec	etronic platfor	ms, field d	ocume	entation)	28
Preparation for seminars/labs, homework, papers, portfolios and essays					28		
Tutorship						14	
Evaluations						21	
Other activities:					-		
3.7 Total individual study hours 119							
3.8 Total hours 175							
per semester							
3.9 Number of 7							
ECTS credits							

4. Prerequisites (if necessary)

4.1. curriculum	Systems for Design and Implementation	
	Artificial Intelligence	
4.2. competencies	• Average programming skills in a high level programming language	

5. Conditions (if necessary)

5.1. for the course	•	Room with projector
5.2. for the seminar /lab	•	Room with projector, with internet access and ability to use personal
activities		laptops

6. Specific competencies acquired

1	
Prof	Ability to apply knowledge of computing and mathematics appropriate to the discipline;
essio	Ability to analyze a problem, and identify and define the computing requirements appropriate
nal	to its solution;
com	Ability to identify and to specify computing requirements of an application and to design,
pete	implement, evaluate, and justify computational solutions;
ncies	Ability to use current techniques and skills to integrate available theory and tools necessary
	for applied computing practices.
Tran	Ability to apply mathematical foundations, algorithmic principles, and computer science
svers	theory;
al	Ability to apply design and development principles in the construction of software systems;
com	Ability to acquire knowledge properly in an application domain in the modeling and design;
pete	Ability to work effectively in a team.
ncies	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Good understanding of hands-on applications;
discipline	• Be able to identify meaningful applied computing problems
	• Be able to apply theories, principles and concepts with technologies
	to design, develop, and verify computational solutions;
7.2 Specific objective of the	• Knowledge about general theory and specific DSS theory;
discipline	• Systematic knowledge about what the designer of a DSS needs to
	know;

8. Content

8.1 Course	Teaching methods	Remarks
1.The concept of Decision Support Systems	Presentation, conversation, case studies	
(DSS)		
- The Steps of Decision Support, Classification		
of		
Problems		
- The Components of a DSS.		
- Some Computerized Tools for Decision		
Support		
2.Computerized Decision Support	Presentation, conversation, case studies	

- Decision Making - Rational Decisions,	
Definitions of Rationality, Bounded Rationality	
and Muddling Through	
- Models, The Facilities of Models, Phases of	
the Decision-Making Process	
3. The Nature of Managers, Appropriate Data	Presentation, conversation, case studies
Support,Information Processing Models.	resentation, conversation, case studies
Group Decision Making	
Group Decision Waking	
4.Decisions and Decision Modeling - Types of	Presentation, conversation, case studies
Decisions.	
- Human Judgment and Decision Making.	
- Modeling Decisions. Components of Decision	
Models	
5.Normative Systems	Presentation, conversation, case studies
- Normative and Descriptive Approaches.	
- Decision-Analytic Decision Support Systems.	
- Equation-Based and Mixed Systems	
6.Data Component	Presentation, conversation, case studies
- Characteristics of Information.	
- Databases to Support Decision Making.	
- Database Management Systems	
7.Data Warehouses.	Presentation, conversation, case studies
- Data Mining and Intelligent Agents	
9 Model Component	Presentation conversation area studies
8.Model ComponentModels, Representation, Methodology	Presentation, conversation, case studies
- Models, Representation, Methodology	
9.Model Based Management Systems, Access to	Presentation, conversation, case studies
Models, and Understandability of Results.	
- Integrating Models, Sensitivity of a Decision	
10.Intelligence and Decision Support Systems	Presentation, conversation, case studies
- Programming Reasoning	
- Backward Chaining Reasoning and Forward	
Chaining Reasoning.	
Knowledge Representation for Decision Support	
Systems	
- Computational Intelligence for Decision	
Support,	
- Expert Systems and Artificial Intelligence in	
Decision Support Systems	
	1

11.User Interfaces to Decision Support Systems.		
- Support for Model Construction and Model		
Analysis.		
- Support for Reasoning about the Problem		
Structure		
in Addition to Numerical Calculations.		
- Support for Both Choice and Optimization of		
Decision Variables		
12.Graphical Interface	Presentation, conversation, case studies	
- The Action Language, Menus.		
Mail Component		
- Integration of Mail Management.		
- Implications for DSS Design		
13.Modeling and Analysis.	Presentation, conversation, case studies	
- Simulation Applications.		
14.Business Analytics.	Presentation, conversation, case studies	
- DSS based on Data Warehouse.		
	-	

Bibliography

1. Alter, S. L. Decision support systems: current practice and continuing challenges. Reading, Mass., Addison-Wesley Pub., 1980.

2. Delic, K.A., Douillet,L. and Dayal, U. "Towards an architecture for real-time decision support systems:challenges and solutions, 2001.

3. Druzdzel, M. J. and R. R. Flynn. Decision Support Systems. Encyclopedia of Library and Information Science. A. Kent, Marcel Dekker, Inc., 1999

- 4. Finlay, P. N., Introducing decision support systems. Oxford, UK Cambridge, Mass., NCC Blackwell; Blackwell Publishers, 1994.
- 5. French, S. and Geldermann, J. The varied contexts of environmental decision problems and their implications for decision support. Environmental Science and Policy 8 (2005), 378-391.

6. French, S., Carter, E., and Niculae, C. Decision support in nuclear and radiological emergency situations:

Are we too focused on models and technology? International Journal of Risk Assessment and Management (2007).

7. Gachet, A. Building Model-Driven Decision Support Systems with Dicodess. Zurich, VDF, 2004.

8. Gadomski, A.M. at al.An Approach to the Intelligent Decision Advisor (IDA) for Emergency Managers.Int. J. Risk Assessment and Management, Vol. 2, Nos. 3/4., 2001.

9. Larissa T. Moss, Shaku Atre, Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications By Publisher: Addison Wesley Professional Pub Date: February 25, 2003 Print ISBN-10: 0-201-78420-3 Print ISBN-13: 978-0-201-78420-6 Pages: 576 Slots: 2.0

10. Little, J.D.C. "Models and Managers: The Concept of a Decision Calculus." Management Science, Vol.16, NO.8, April, 1970.

8.2 Seminar / laboratory	Teaching methods	Remarks

1-2. Administration. Survey of the sources of information available on Internet and Intranet. Choosing the paper topics and scheduling the presentations.	Interactive exposure, Explanation, Conversation.
3-5. Delivery of paper review.	Interactive exposure, Explanation, Conversation.
6-8. Delivery of software system review.	Interactive exposure, Explanation, Conversation.
7-11. Delivery of personal software project.	Interactive exposure, Explanation, Conversation.
12-14. Delivery of research report.	Interactive exposure, Explanation, Conversation.

Bibliography

1. Alter, S. L. Decision support systems: current practice and continuing challenges. Reading, Mass., Addison-Wesley Pub., 1980.

2. Delic, K.A., Douillet,L. and Dayal, U. "Towards an architecture for real-time decision support systems:challenges and solutions, 2001.

3. Druzdzel, M. J. and R. R. Flynn. Decision Support Systems. Encyclopedia of Library and Information Science. A. Kent, Marcel Dekker, Inc., 1999

4. Finlay, P. N., Introducing decision support systems. Oxford, UK Cambridge, Mass., NCC Blackwell; Blackwell Publishers, 1994.

5. French, S. and Geldermann, J. The varied contexts of environmental decision problems and their implications for decision support. Environmental Science and Policy 8 (2005), 378-391.

6. French, S., Carter, E., and Niculae, C. Decision support in nuclear and radiological emergency situations:

Are we too focused on models and technology? International Journal of Risk Assessment and Management (2007).

7. Gachet, A. Building Model-Driven Decision Support Systems with Dicodess. Zurich, VDF, 2004.

8. Gadomski, A.M. at al.An Approach to the Intelligent Decision Advisor (IDA) for Emergency

Managers.Int. J. Risk Assessment and Management, Vol. 2, Nos. 3/4., 2001.

9. Larissa T. Moss, Shaku Atre, Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications By Publisher: Addison Wesley Professional Pub Date: February 25, 2003 Print ISBN-10: 0-201-78420-3 Print ISBN-13: 978-0-201-78420-6 Pages: 576 Slots: 2.0

10. Little, J.D.C. "Models and Managers: The Concept of a Decision Calculus." Management Science, Vol.16, NO.8, April, 1970.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the discipline is consistent with the similar disciplines from other Romanian universities and universities from abroad, as well as with the requirements that potential employers would have in this field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	The correctness and completeness of the	Written exam	10%	
	accumulated knowledge.			
10.5 Seminar/lab activities	A review of a recent paper	Evaluation of the <i>paper</i>	20%	
	(from the area of DSS)	review (a written paper and		
		an oral presentation)		
	A review of a software	Evaluation of the software	20%	
	system (any library,	system review (a written		
	framework, tool etc from	paper and an oral		
	the area of DSS is a good	presentation)		
	candidate)			
	A personal software	Evaluation of the project	25%	
	project on a selected topic	(software implementation,		
		documentation and		
		demonstration)		
	A research report on a	Evaluation of the project	25%	
	selected topic (the same	(software implementation,		
	selected topic as the one	documentation and		
	from the personal	demonstration)		
	software project)			
10.6 Minimum performance standards				
Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the				
domain, that (s)he is capable	le of stating these knowledge	in a coherent form, that		
(s)he has the ability to establish certain connections and to use the knowledge in solving different				
problems. Penalty points are awarded for delays in submissions. Successful passing of the exam is				
conditioned by the final grade that has to be at least 5.				

Date	Signature of course coordinator	Signature of seminar coordinator
28.04.2021	Lect. PhD. Radu D. Găceanu	Lect. PhD. Radu D. Găceanu
Date of approval	Signature of the head of department	
	Prof. PhD. Laura Dioşan	