SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of th	ne di	scipline					
(en) Programming Paradigms							
(ro)	Paradigme de Programare						
2.2 Course coordinator Assoc. Prof. Eng. Florin Craciun							
2.3 Seminar coordinator Assoc. Prof. Eng. Florin Craciun							
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8. Code of the discipline MME8028							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2	2	3.3	2
		course		seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5	28	3.6	28
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					28
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					14
Evaluations				14	
Other activities:				-	
Other activities:				-	

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of Programming		
	Object-Oriented Programming		
	Functional and Logic Programming		
4.2. competencies	Average software development skills		

5. Conditions (if necessary)

5.1. for the course	projector
5.2. for the seminar /lab activities	projector

6. Specific competencies acquired

o. Specific compe	
	 Understanding and working with basic concepts in computer programming;
Professional	Capability of analysis and synthesis;
competencies	 Proficient use of tools and languages specific to software systems development;
	Knowing the specifics of main programming paradigms
Transversal competencies	 Professional communication skills; concise and precise description, both oral and
	written, of professional results;
	Independent work capabilities; able to fulfill different roles;
	Antepreneurial skills.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	(outcome of the dequired competencies)
discipline	 Know and understand fundamental concepts of programming. Be able to apply different programming paradigms to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students should know the main features of different programming paradigms: procedural, object-oriented, concurrent, functional, logical, event-based, scripting have a good understanding of the following concepts: value, type, variable, binding, procedural abstraction, data abstraction, object, class, component, interface, polymorphism; learn the similarities and differences between different programming paradigms in terms of the concepts they implement

8. Content

8.1 Course	Teaching methods	Remarks
1. Basic concepts	• Interactive exposure	

	Explanation
	Conversation
	Didactical
	demonstration
2. Oz syntax, data structures	
2. Oz syntax, data structures	• Explanation
	Conversation
	Didactical
	demonstration
3. Oz syntax, data structures	Explanation
	Conversation
	Didactical
4 0 4	demonstration
4. Statements, Kernel Language, Abstract Machine	Explanation
Macmie	Conversation
	Didactical
	demonstration
5. Higher-Order Programming	Explanation
	Conversation
	 Didactical
	demonstration
6. Lambda Calculus	Explanation
o. Lamout Calculus	Explanation
	• Conversation
	Didactical
	demonstration
7. Tupled Recursion and Exceptions	Explanation
	• Conversation
	• Didactical
	• Didactical
	demonstration
8. Types, ADT, Components	Explanation
	• Conversation
	Didactical
	demonstration
9. Declarative Concurrency	Explanation
	Conversation
	Didactical
	demonstration
10. Declarative Concurrency	Explanation
	Conversation
	Didactical

	demonstration
11. Declarative Concurrency	Explanation
	• Conversation
	Didactical
	demonstration
12. Stateful Programming	 Explanation
	• Conversation
	Didactical
	demonstration
13. Relational Programming	Explanation
	• Conversation
	Didactical
	demonstration
14. Constraint Programming	 Explanation
	Conversation
	Didactical
	demonstration

Bibliography

- 1. SCOTT, MICHAEL L.: Programming Language Pragmatics, 4th ed, Morgan-Kaufmann, 2016
- 2. SEBESTA, ROBERT W.: Concepts of Programming Languages, 10th ed, Pearson Education, 2012
- 3. SZYPERSKI, CLEMENS: Component Software. Beyond Object-Oriented Programming, Addison Wesley (1st ed. 1998, 2nd ed. 2002 with GRUNTZ, DOMINIK and MURER, STEFAN).
- 4. STROUSTRUP, BJARNE: The C++ Programming Language Special Edition, Addison-Wesley, 2000 chapter 2
- 5. VAN ROY, PETER; HARIDI, SEIF: Concepts, Techniques and Models of Computer Programming, MIT Press, 2004
- 6. WATT, David A.: Programming Language Design Concepts, Wiley, 2004

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Research papers allocation for the oral	Use practical tools to	Seminar is
presentation	implement group	organized as a
	projects. Discuss	total of 14 hours –
	research papers.	2 hours every
		second week
		Project is
		organized as a
		total of 14 hours –
		2 hours every
2. First programming assignment	Use practical tools to	
	implement group	
	projects. Discuss	
	research papers.	
3. Research papers presentations	Use practical tools to	
	implement group	

		projects. Discuss		
		research papers.		
4.	Second programming assignment	Use practical tools to		
		implement group		
		projects. Discuss		
		research papers.		
5.	Research papers presentations.	Use practical tools to		
		implement group		
		projects. Discuss		
		research papers.		
6.	Third programming assignment	Use practical tools to		
		implement group		
		projects. Discuss		
		research papers.		
7.	Research papers presentations.	Use practical tools to		
		implement group		
		projects. Discuss		
		research papers.		
Bibliography				
	Research papers			
	Mozart System			

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- The content of the course is considered by the software companies as important for average software development skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in		
			the grade (%)		
10.4 Course	- know the basic principle of	Oral exam	40.00%		
	the domain;				
	- apply the course concepts				
	- problem solving				
10.5 Seminar/lab	- be able to apply course	-Paper presentation	15.00%		
activities	concepts	- 3 programming	3x15.00%		
	- be able to do a critical	assignments			
	evaluation of research				
	papers				
10.6 Minimum performance standards					
At least grade 5 (from a scale of 1 to 10) at both oral exam and seminar work.					

Date	Signature of course coordinator	Signature of seminar coordinator
	Assoc. Prof. Eng. Florin CRACIUN	Assoc. Prof. Eng. Florin CRACIUN

Date of approval	Signature of the head of department	