SYLLABUS

1. Information r	regarding the programme
------------------	-------------------------

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science/ Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Introduction to Natural Language Processing							
2.2 Course coordinatorLecturer Ph.D. Lupea Mihaiela-Ana							
2.3 Seminar co	nar coordinator Lecturer Ph.D. Lupea Mihaiela-Ana						
2.4. Year of	3	2.5	2	2.6. Type ofC2.7 Type ofoptional			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1 lab+
					1 pr
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6 seminar/laboratory	24
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					10
Evaluations					10
Practical project					27
3.7 Total individual study hours 127					•

3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Formal languages, Data structures, Graphs Algorithms
4.2. competencies	Programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	• Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

Professional competencies	 Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Advanced ability to approach, model and solve phenomena and problems from natural language and economy using fundamental knowledge from mathematics and computer science; Ability to approach and solve complex problems using various techniques of computational intelligence; Proficient use of methodologies and tools specific to programming languages and software systems.
Transversal competencies	 Etic and fair behavior, committment to professional deontology Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities; Antepreneurial skills; working with economical knowledge; continuous learning Good English communication skills

7.1 General objective of the discipline	 To introduce the basic principles, domains and tasks in Natural Language Processing (NLP) To understand the current state of the art in order to realize an overview of a specific domain in NLP and to implement a NLP tool.
7.2 Specific objective of the discipline	• Apply and use formal models (logics, grammars, parsing), statistic models (HMM), artificial intelligence algorithms and techniques to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (word sense disambiguation, document summarization, anaphora resolution) in Natural Language Processing domain.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course	Teaching methods	Remarks
 Course 1. Natural Language Processing (NLP): stages, domains, applications. Course 2. -WordNet and RoWordNet - knowledge structure, semantic relations, lexical relations. WordNetSimilarity tool and similarity measures for words. 	Exposure: description, explanation, examples, debate, dialogue Exposure: description, explanation, examples, debate, dialogue	
 Course 3. Part of speech tagging. part-of-speech tagging in English. part-of-speech tagging in Romanian 	Exposure: description, explanation, examples, debate, dialogue	

	Ennegannes deserinting	
Course 4. Syntactic parsing	Exposure: description,	
- grammar rules for English - sentence level construction;	explanation,	
- Cocke-Kasami-Yonger (CKY) algorithm;	examples, debate,	
Course 5. Statistical parsing	dialogue Exposure: description,	
- Probabilistic Context-Free Grammars (PCFG);	explanation,	
	examples, debate,	
- Probabilistic CKY (Cocke-Kasami-Yonger) parsing of	dialogue	
PCFGs.	<u> </u>	
Course 6. Hidden Markov Model	Exposure: description,	
- Markov chains, Hidden Markov Model(HMM);	explanation,	
- three canonical problems associated with HMM	examples, debate,	
- the forward algorithm; Viterbi algorithm.	dialogue	
Course 7. Word Sense Disambiguation	Exposure: description,	
C	explanation,	
- dictionary and graph-based approaches.	examples, debate,	
	dialogue	
Course 8. Document summarization	Exposure: description,	
- approaches based on clustering, graphs.	explanation,	
approaches based on clustering, graphs.	examples, debate,	
	dialogue	
Course 9. Anaphora resolution	Exposure: description,	
- Lapin and Lease algorithm	explanation,	
- Mitkov's algorithm	examples, debate,	
	dialogue	
Course 10. Sentiment analysis	Exposure: description,	
- opinion mining in social media	explanation,	
- emotion analysis in literature	examples, debate,	
	dialogue	
Course 11. Textual entailment	Exposure: description,	
	explanation,	
	examples, debate,	
Course 12.	dialogue	
Students' presentations of the practical projects	Debate, dialogue	
students presentations of the practical projects		

Bibliography

- 1. J.ALLEN : Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.
- 2. E. CHARNIAK: Statistical language learning, MIT press, 1996.
- 3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University, 1994.
- 4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.
- 5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.
- 6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.
- 7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.
- 8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
- 9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001.
- 10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.

8.2 Seminar / laboratory	Teaching methods	Remarks			
1. Working with WordNet, Romanian WordNet and WordNetSimilarity.	Explanation, dialogue, case studies	The seminar/lab is structured as 2 hours classes every second week			
2. Working with dedicated parsers and taggers (Stanford, CST tools, Racai tools)	Explanation, dialogue, case studies				
3. Students' presentations of a NLP domain and a corresponding tool.	Dialogue, debate				
4. Students' presentations of a NLP domain and a corresponding tool.	Dialogue, debate				
5. Working with dedicated tools for summarization, anaphora resolution, sentiment analysis.	Explanation, dialogue, case studies				
6. Students' presentations of the practical projects.	Dialogue, debate				
Bibliography					
1. Rada Mihalcea: <u>www.cs.unt.edu/~rada/downloads.html</u>					
2. Resurse lingvistice in limba romana: <u>www.racai.ro</u>					

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in
		methods	the grade (%)
10.4 Course	- know to write an overview of a specific NLP task	Theoretical report – presentation of a NLP task.	35%
10.5 Seminar/lab activities	- be able to implement course algorithms	Practical project - implementation of a NLP tool.	35%
	- be able to apply theoretical concepts in practical tasks	Develop resources for Romanian NLP tasks	20%
10.6 Activity	- activity during courses and labs	Active attendance	10%
10.7 Minimum perf	ormance standards		
The final gra	ade to be at least 5 (from a scale of 1	to 10).	

Date	Signature of course coordinator	Signature of seminar coordinator
30.04.2022	Lect. Ph.D. Lupea Mihaiela	Lect. Ph.D. Lupea Mihaiela

Date of approval

Signature of the head of department

.....

Prof. Ph.D. Dioşan Laura