1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science (in Romanian)
Qualification	

2. Information regarding the discipline

Code

		, 0						
2.1 Name of the	e dis	scipline	Test Design Techniques (Tehnici de testare software)					
2.2 Course coor	din	ator		Lecturer PhD Camelia Chisăliță-Crețu				
2.3 Seminar coo	ordi	nator		Lecturer PhD Camelia Chisăliță-Crețu				
2.4. Year of	3	2.5	6	2.6. Type of	С	2.7 Type of	Optional	
study		Semester		evaluation		discipline		
2.8 Discipline	-	MI E5110		·		·		
G 1	-	VILEJIIU						

3. Total estimated time (hours/semester of didactic activities)

		· · · · · · · · · · · · · · · · · · ·			
3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 lab +
				seminar/laboratory	2 project
3.4 Total hours in the curriculum	60	Of which: 3.5 course	24	3.6	36
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					
Evaluations					
Other activities:					-
$2.7 \mathrm{T}_{2}$ (1) $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $					

3.7 Total individual study hours	65
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	OOP, Programming Fundamentals, Advanced Programming Methods
4.2. competencies	• Good programming skills in at least one of the programming languages Java, C#

5. Conditions (if necessary)

5.1. for the course	Course hall with projector
5.2. for the seminar /lab	• Laboratory: computers and use of a programming language
activities	environment

6. Specific competencies acquired

Professional competencies	•	 C2.1 Identify adequate software systems development methodologies C1.2 Identify and explain specific test design techniques that correspond to a testing level. C1.3 Source code and goal oriented test elaboration in a well-known programming language. C4.3 Identify models and methods adequate to real life problem solving.
Transversal competencies	•	 CT1 Apply rules to organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics. CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Enhance the students understanding of testing and test design techniques. Provide the students with an environment in which they can explore the usage and usefulness of software testing and test design concepts in various business scenarios. Induce a realistic and industry driven view of software testing concepts and their inherent benefits.
7.2 Specific objective of the discipline	 Give students the ability to explore various test design techniques applied to different levels of testing. Improve the students' abilities to tackle on goal driven testing. Enhance the students understanding of test design techniques value in business. Students will be able to use various tools for the testing process (i.e., test management, test running, test reporting and bug reporting). Students will be able to design test cases according to an established testing goal and using specific test design technique in order to investigate the software.

8. Content

8.1 Course	Teaching methods	Remarks
 Software Testing. Test Design Techniques Software Testing. Goals. Scope Test Design Technique. Attributes Taxonomy of Test Design Techniques 	 Interactive exposure Explanation. Conversation Didactical demonstration 	
 2. Coverage-based Techniques I 2.1. Focus. Objectives 2.2. Tours. Logical Expressions 	 Interactive exposure Explanation. Conversation Didactical demonstration 	
 3. Coverage-based Techniques II 3.1. Specification-based Testing; 3.2. Requirements-based Testing; 	 Interactive exposure Explanation. Conversation Didactical demonstration 	
4. Risk-based Techniques	Interactive exposure	

11 Forme Objectives	E
	• Explanation.
4.2. Quick-tests. History-based Testing. Usability Testing	Conversation
4.3. HTSM. Failure modes	Didactical
	demonstration
5. Activity-based Techniques	• Interactive exposure
5.1. Focus. Objectives	Explanation
5.2 Guerilla Testing All-nairs Testing	Conversation
5.3 Use Cases Testing Scenario Testing	
Coverage based Techniques vs Activity based Techniques	• Didactical
Coverage-based reeningues vs Activity-based reeningues	demonstration
6. Evaluation-based Techniques	Interactive exposure
6.1. Focus. Objectives	Explanation
6.2. Function Equivalence Testing. Self-verifying data	Conversation
	Didactical
	demonstration
7. Desired result-based Techniques	• Interactive exposure
7.1. Focus Objectives	Fynlanation
7.2 Confirmation Testing User Acceptance Testing	Conversation
7.3 Desired based Techniques vs Evaluation based	
Tashniques	• Didactical
Techniques	demonstration
8. Tester-based Techniques	Interactive exposure
8.1. Focus. Objectives	• Explanation.
8.2. User Testing. Alpha Testing. Beta Testing	Conversation
8.3. Bug Bashes. Paired Testing.	Didactical
8.4. Coverage-based Techniques vs Tester-based	demonstration
Techniques	
9. Test Design Techniques Analysis	Interactive exposure
9.1. Tester-based Techniques vs Activity-based Techniques	• Explanation.
9.2. Risk-based Techniques vs Coverage-based Techniques	Conversation
9.3. Desired result-based Techniques vs Risk-based	Didactical
Techniques	demonstration
10 Security Testing	
10. Security Testing	• Interactive exposure
10.1.1 erminology	• Explanation.
10.2. Types	Conversation
10.3.Advanced Techniques	Didactical
	demonstration
11. Bug Reporting	Interactive exposure
11.1.Challenges	Conversation
11.2.RIMGEA Strategy	
12. Project Presentations	• Interactive exposure
	Conversation

Bibliography

[Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Software, Wiley, 1999.

[Brn02] I. Burnstein, Practical Software Testing, Springer, 2002.

[Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002.

[Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004.

[Nai08] K. Naik, P. Tripathy, Software testing and quality assurance. Theory and Practice, A John Wiley & Sons, Inc., 2008.

[Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley, 2009.

[Pres10] R. S. Pressman, Software engineering: a practinioner's approach, seventh edition, Higher Education, 2010.

[BBST2008] BBST – Bug Advocacy,

http://www.testingeducation.org/BBST/bugadvocacy/BugAdvocacy2008.pdf

[BBST2010] BBST – Fundamentals of Testing, Cem Kaner,

http://www.testingeducation.org/BBST/foundations/BBSTFoundationsNov2010.pdf.

[BBST2011] BBST – Test Design, Cem Kaner,

http://www.testingeducation.org/BBST/testdesign/BBSTTestDesign2011pfinal.pdf

[Whitt2012] J. Whittaker, J. Arbon J. Carollo, How Google Tests Software, Google, Pearson Education, 2012.

[OWASP2014] QWASP, Testing guide 4.0, 2014, <u>https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf</u>

[NRVR2014] Ana Filipa Nogueira, José Carlos Ribeiro, Francisco Fernández de Vega, Mário Alberto Zenha-Rela, Object-Oriented Evolutionary Testing: A Review of Evolutionary Approaches to the Generation of Test Data for Object-Oriented Software, International Journal of Natural Computing Research 4(4):15-35, October, 2014.

[KMS2014] Kaur, Manpreet and Rupinder Singh. A Review of Software Testing Techniques, 2014. [Meer2014] Joris Meerts, Functional Testing Heuritics,

https://www.testingreferences.com/docs/Functional_Testing_Heuristics.pdf

[Draghia2019] Claudiu Draghia, Gamificarea in software testing. Testing Challenges, <u>http://testingchallenges.thetestingmap.org/</u>, 2019.

[ForK2019] István Forgács, Attila Kovács, Practical Test Design Selection of traditional and automated test design techniques, BCS, 2019.

[BSR2021] F. A. Bhuiyan, M. B. Sharif and A. Rahman, Security Bug Report Usage for Software Vulnerability Research: A Systematic Mapping Study, IEEE Access, vol. 9, pp. 28471-28495, 2021, doi: 10.1109/ACCESS.2021.3058067.

[AIW2021] Samah W.G. AbuSalim, Rosziati Ibrahim, Jahari Abdul Wahab, Comparative Analysis of Software Testing Techniques for Mobile Applications, Journal of Physics: Conference Series, vol 1793, 2021.

[PLGM2022] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, Raymond J. Mooney, Learning to Describe Solutions for Bug Reports Based on Developer Discussions, ACL 2022, pp. 2935 – 2952.

8 2 Sominor / Johor	etomy	Tooshing methods	Domorka
8.2 Seminar / labor	ratory	Teaching methods	Remarks
1. Laboratory 1		Presentation, Conversation, Problematizations,	
Testing Pro	ject Setup	Discovery, Other	
	5 1	methods – individual study, exercises	
2. Laboratory 2		Presentation, Conversation, Problematizations,	
Coverage-b	ased Techniques	Discovery, Other	
0	1	methods – individual study, exercises	
3. Laboratory 3		Presentation, Conversation, Problematizations,	
Risk-based	Techniques	Discovery, Other	
	1	methods – individual study, exercises	
4. Laboratory 4		Presentation, Conversation, Problematizations,	
Test Autom	nation Tools	Discovery, Other	
		methods – individual study, exercises	
5. Laboratory 5		Presentation, Conversation, Problematizations,	
Activity-ba	sed Techniques OR	Discovery, Other	
Desired res	ult-based Techniques	methods – individual study, exercises	
6. Laboratory 6		Evaluation	
Project turn	i-in		
References:			
See references from	n Lectures		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to apply test design techniques for a software product, in a similar way they are used in industry.
- Students will be able to understand the differences between the goals and scope of the various test techniques applied to a software system.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Design and develop a testing	Oral Examination	70%
	solution (project) for a		
	software product with focus on		
	test design techniques. The		
	corresponding grade is		
	denoted by P .		
10.5 Seminar/laboratory	Each lab activity will be	Laboratory Activity	30%
activities	graded. The arithmetic		
	average of the grades is		
	denoted by L.		
Remark:			
. .		0 0 0 1	

- Laboratory assignments will pe achieved in groups of 2-3 students.
- Testing project will pe achieved in groups of 4-5 students.

10.6 Minimum performance standards

- Students will be able to apply test design techniques according to established goals for a software system.
- Students will be able to unstandand the differences between software testing goal, scope, and test design technique concepts.
- The final grade (M) is computed as follows: M = 30%L+70%P.
- At least $M \ge 5.00$ is favourable to pass this course exam.

Date	Signature of course coordinator	Signature of seminar coordinator
13.04.2023	Lect. PhD. Camelia Chisăliță-Crețu,	Lect. PhD. Camelia Chisăliță-Crețu,

Date of approval

Signature of the head of department

Prof. PhD. Laura Dioșan