SYLLABUS

1. Information regarding the programme			
1.1 Higher education institution	Babes Bolyai University		
1.2 Faculty	Mathematics and Computer Science Faculty		
1.3 Department	Computer Science Department		
1.4 Field of study	Computer Science		
1.5 Study cycle	Bachelor		
1.6 Study programme / Qualification	Computer Science (English)		

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en) / (ro)			Computer Science Investigations : IoT / Investigații în Știința Calculatoarelor : IoT			ii	
2.2 Course coordinator			Lect. Dr. Mircea Ioan-Gabriel				
2.3 Seminar coordinator			Le	ect. Dr. Mircea Ioan-Ga	brie	l	
2.4. Year of study	3	2.5 Semester	1	2.6. Type of evaluation	C	2.7 Type of discipline	0
2.8 Code of the discipline			0	PTIONAL			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: course	3.2	2	3.3 seminar/ laboratory	2
3.4 Total hours in the curriculum	56	Of which: course	3.5	2 8	3.6 seminar/ laboratory	2 8
Time allotment:						hours
Learning using manual, course support, bibliography, course notes					2	
Additional documentation (in libraries, on electronic platforms, field documentation)					0	
Preparation for seminars/labs, homework, papers, portfolios and essays					10	
Tutorship					5	
Evaluations					2	
Other activities:						
3.7 Total individual study hours		19				
3.8 Total hours per semester 75						

3.9 Number of ECTS credits

4. Prerequisites (if necessary)

$\cdots = $	
4.1. curriculum	

	• mathematical analysis, data structures and algorithms, problem solving, statistics
4.2. competencies	Object oriented programming competencies, algorithmic
	reasoning, logical reasoning

5. Conditions (if necessary)

5.1. for the course	•projector
5.2. for the seminar / lab activities	•PCs or laptops with as higher computing capabilities as possible

6. Specific competencies acquired

Professional competencie s	Embedded IoT development competencies Scientific method of research Analysis and formalization of problems requiring computer science methods and models Use of computer science methods in problems solving Analysis, design, and implementation of software systems for real world applications Proficient use of methodologies and tools specific to programming languages and software systems
Transversal competenci es	CT1 Application of efficient and rigorous working rules, manifest responsible attitudes toward the scientific and didactic fields, respecting the professional and ethical principles. CT2 Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in Romanian as well as in a widely used foreign language CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities to value the knowledge, to adapt to requirements of a dynamic society and to communicate in Romanian language and in a
	language of international circulation

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective	• The theoretical and practical training of students for thorough		
of the discipline	computer science investigations in the realm of IoT		
	Understanding and properly applying		
7.2 Specific objective of the discipline	 scientific research methodology 		
	 IoT Development methodology 		
	Software Development practices		
	Machine Learning practices		
	Algorithmic Reasoning		
	Testing practices		

8. Content

8.1 Course	Teaching methods	Remar
		ks
1. Investigating real-life problems. The social	Interactive exposure	
purpose of Computer Science. Ethics and morality	Explanation	

in Software Development and Science	Conversation Didactical demonstration	
2. Evaluating the guality of scientific papers and	Interactive exposure	
publications. Establishing a proper bibliographic	Explanation	
basis	Conversation	
	Didactical demonstration	
3. Oualitatively sorting and filtering bibliographic	Interactive exposure	
resources and assessing the state-of-the-art of the	Explanation Conversation	
problem domain. Clustering the bibliography	Didactical demonstration	
based on the main research directions		
bused on the main research directions		
· · · · · · · · · · ·		
4. The danger of plagiarism and ways of	Interactive exposure	
combating it. Identifying unexplored or improvable	Explanation Conversation	
research niches	Didactical demonstration	
5. Harvesting datasets from the state-of-the-art	Interactive exposure	
of the research niche as benchmarks for	Explanation Conversation	
performance evaluation	Didactical	
	demonstration	
6. Artificial Intelligence vs. Classical	Interactive exposure	
Algorithmics: choosing the right original approach	Explanation Conversation	
	Didactical demonstration	
7. Designing and Developing an API for the	Interactive exposure	
proposed approach. Programming principles and	Explanation Conversation	
good practices. Choosing the architecture, design	Didactical demonstration	
patterns, language and technology. API testing		
8. Data analysis, preprocessing and visualisation	Interactive exposure	
for algorithm training and performance evaluation.	Explanation Conversation	
Training, Validation, Testing. Performance	Didactical demonstration	
assessment		
9. Optimisation via hyper-parametrization	Interactive exposure	
	Explanation Conversation	
	Didactical demonstration	
10. Software design aspects: design patterns and	Interactive exposure	
principies	Explanation Conversation	
11 Software development aspecter cyborsocurity	Interactive exposure	
IIX testing	Explanation Conversation	
OA, toung	Didactical demonstration	
12. IoT: Background and Challenges	Interactive exposure	
	Explanation Conversation	
	Didactical demonstration	
13. IoT design and development aspects	Interactive exposure	
	Explanation Conversation	
	Didactical demonstration	

14. Building and deploying an IoT-enhanced
software product

Bibliography

Programming Fundamentals

- 1. Donald E. Knuth. 2011. The Art of Computer Programming: Combinatorial Algorithms, Part 1 (1st. ed.). Addison-Wesley Professional.
- 2. Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming Language (2nd. ed.). Prentice Hall Professional Technical Reference.
- 3. Bruce Eckel. 2000. Thinking in C++, Volume I: Introduction to Standard C++, Second Edition (2nd. ed.). Prentice Hall PTR, USA.
- 4. Dijkstra, Edsger W. A Discipline of Programming. 1976.
- 5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd. ed.). The MIT Press.
- 6. Thomas H. Cormen. 2013. Algorithms Unlocked. The MIT Press.
- 7. 1999. Refactoring: improving the design of existing code. Addison-Wesley Longman Publishing Co., Inc., USA.
- 8. <u>Antti Laaksonen</u>, Guide to Competitive Programming Learning and Improving Algorithms Through Contests, Second Edition. <u>Undergraduate Topics in Computer</u> <u>Science</u>, Springer 2020, ISBN 978-3-030-39356-4, pp. 1-296

Software Design and Architecture

- 1. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design patterns: elements of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc., USA.
- 2. Robert C. Martin. 2008. Clean Code: A Handbook of Agile Software Craftsmanship (1st. ed.). Prentice Hall PTR, USA.
- 3. Robert C. Martin. 2017. Clean Architecture: A Craftsman's Guide to Software Structure and Design (1st. ed.). Prentice Hall Press, USA.
- 4. Bhuvan Unhelkar. 2017. Software Engineering with UML (1st. ed.). Auerbach Publications, USA.
- 5. Alan Dennis, Barbara Haley Wixom, and David Tegarden. 2015. Systems Analysis and Design: An Object-Oriented Approach with UML (5th. ed.). Wiley Publishing.
- 6. Richards, M., Ford, N., & Safari, an O'Reilly Media Company. (2020). Fundamentals of Software Architecture.
- 7. Sam Newman. 2015. Building Microservices (1st. ed.). O'Reilly Media, Inc.
- 8. Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. 2016. Microservice Architecture: Aligning Principles, Practices, and Culture (1st. ed.). O'Reilly Media, Inc.

Data Persistency

- 1. Thomas Erl, Ricardo Puttini, and Zaigham Mahmood. 2013. Cloud Computing: Concepts, Technology & Architecture (1st. ed.). Prentice Hall Press, USA.
- 2. Kief Morris. 2016. Infrastructure as Code: Managing Servers in the Cloud (1st. ed.). O'Reilly Media, Inc.
- 3. Kavis, Michael J. Architecting the Cloud: Design Decisions for Cloud Computing Service Models (saas, Paas, and Iaas). New York: John Wiley & Sons, 2014.

Artificial Intelligence

- 1. Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd. ed.). Prentice Hall Press, USA.
- 2. GeÌron, Aureìlien. Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd ed., O'Reilly, 2019.
- 3. David James. 2018. Introduction to Machine Learning with Python: A Guide for Beginners

in Data Science (1st. ed.). CreateSpace Independent Publishing Platform, North Charleston, SC, USA.

4. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The MIT Press.

Computer Networking and Security

- 1. Andrew Tanenbaum. 2002. Computer Networks (4th. ed.). Prentice Hall Professional Technical Reference.
- 2. Jon Erickson. 2008. Hacking: the art of exploitation, 2nd edition (Second. ed.). No Starch Press, USA.
- 3. Kevin D. Mitnick and William L. Simon. 2003. The Art of Deception: Controlling the Human Element of Security. John Wiley & Sons, Inc., USA.
- 4. Chwan-Hwa (John) Wu and J. David Irwin. 2013. Introduction to Computer Networks and Cybersecurity (1st. ed.). CRC Press, Inc., USA.
- 5. James Graham, Ryan Olson, and Rick Howard. 2010. Cyber Security Essentials (1st. ed.). Auerbach Publications, USA.
- 6. Mitnick, Kevin D., and William L. Simon. Ghost in the Wires: My Adventures As the World's Most Wanted Hacker. New York: Little, Brown and Company, 2011.

Testing

- 1. Cem Kaner, Jack L. Falk, and Hung Quoc Nguyen. 1999. Testing Computer Software, Second Edition (2nd. ed.). John Wiley & Sons, Inc., USA.
- 2. Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force Vulnerability Discovery. Addison-Wesley Professional.
- 3. Hsu, Tony Hsiang-Chih. Practical Security Automation and Testing: Tools and Techniques for Automated Security Scanning and Testing in DevSecOps. Birmingham: Packt Publishing Ltd, 2019.

ΙοΤ

- 1. Robert Oshana and Mark Kraeling. 2013. Software Engineering for Embedded Systems: Methods, Practical Techniques, and Applications (1st. ed.). Newnes, USA.
- 2. Naveen Balani and Rajeev Hathi. 2015. Enterprise IoT: A Definitive Handbook. CreateSpace Independent Publishing Platform, North Charleston, SC, USA.
- 3. Vuppalapati, C.,Building Enterprise IoT Applications,CRC Press/Taylor & Francis Group,2019
- 4. Dimitrios Serpanos and Marilyn Wolf. 2017. Internet-of-Things (IoT) Systems: Architectures, Algorithms, Methodologies (1st. ed.). Springer Publishing Company, Incorporated.
- 5. Samuel Greengard. 2015. The Internet of Things. The MIT Press.

Scientific Research

- 1. Justin Zobel. 2015. Writing for Computer Science (3rd. ed.). Springer Publishing Company, Incorporated.
- 2. Philip W.L. Fong. 2009. Reading a computer science research paper. SIGCSE Bull. 41, 2 (June 2009), 138–140. DOI:<u>https://doi.org/10.1145/1595453.1595493</u>
- 3. Lury, Celia. Routledge Handbook of Interdisciplinary Research Methods. , 2018.
- Repko, Allen F, et al. Case Studies in Interdisciplinary Research. Thousand Oaks, CA: SAGE Publications, Inc., 2012. SAGE Research Methods. 13 Jan 2021, doi: <u>http://www.doi.org/10.4135/9781483349541</u>
- 5. Repko, Allen F, Rick Szostak, and Michelle P. Buchberger. Introduction to Interdisciplinary Studies., 2017.
- 6. Repko, Allen F, and Rick Szostak. Interdisciplinary Research: Process and Theory. , 2017.

8.2 Seminar / laboratory	Teaching methods	Remar
--------------------------	------------------	-------

		ks
1. During the first 6 weeks, guided by the methodology presented in the course, the student will gradually write, based on the selected bibliography following the scientific investigation process, the chapters State-of-the-art and Proposed Solution of a future scientific article on the topic. At the same time the student will draw out the algorithm and its implementation with the help of the most suitable programming languages and technologies.	Lab assignment Explanation Conversation Scientific method	
2. The student will test the performance of the proposed solution on benchmark datasets from the literature The scientific article will be completed with the chapters Performance Evaluation, Conclusions and future development, and last but not least, Introduction	Lab assignment Explanation Conversation Scientific method	
 3. Before the Christmas holidays, the student will have two deliverables completed: the API - specified, tested and documented (preferably on git) the scientific article describing the whole process that led to the emergence of the API and the evaluation of its performance These deliverables will be presented in the last week of school before the Christmas holidays in front of a commission composed of representatives of partner companies in a standalone event (not during one of the classes). The best scientific research conducted so far will be mentored by real professionals from the industry for the rest of the semester with the purpose of embedding them in actual IoT-enhanced software products. 	Lab assignment Explanation Conversation Scientific method	
Once the investigation is chosen by the mentor, during the winter holidays, the weeks after the holidays and in the exam session, the team of mentors and students will develop an industry- level IoT application and will perfect the proposed solution to achieve the final deliverable: - A software product designed and developed correctly, specified, tested and documented (accessible on git) to illustrate the utility of the proposed scientific solution in a concrete IoT context The final products will participate in the judging phase, a similar event Graduation Day,	Lab assignment Explanation Conversation Scientific method	

intensely publicized.	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course follows the IEEE and ACM curricular recommendations for computer science studies

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Share in the			
	criteria	methods	grade (%)			
10.4 Course	Proper understanding of scientific research methodologies in Computer Science Proper scientific ethics	Scientific article	25%			
10.5 Seminar / lab activities	Framework design and architecture. Programming principles and practices. Testing.	The proposed API - specified, tested and documented (preferably on git)	25%			
	Software application design. Programming principles and practices. Testing.	A software product (accessible on git) to illustrate the utility of the proposed scientific solution	25%			
	IoT software design. Programming principles and practices. Testing.	IoT Module	25%			
10.6 Minimum performance standards						
• Minimum 5 grade	Minimum 5 grade for the course and lab activity					

Date	Signature of course coordinator	Signature of seminar coordinator	
16.01.2021	Lect. Dr. Mircea Ioan-Gabriel	Lect. Dr. Mircea Ioan-Gabriel	
Date of approval		Signature of the head of department	
		Prof. Dr. Diosan Laura-Silvia	