SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science (in English)
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Test Design Techniques (Tehnici de testare software)				e software)			
2.2 Course coordinator Lecturer PhD Camelia Chisăliță-Crețu							
2.3 Seminar coordinator Lecturer PhD Camelia Chisăliță-Crețu							
2.4. Year of	3	2.5	6	2.6. Type of C 2.7 Type of Optional			
study		Semester		evaluation		discipline	
2.8 Discipline		MLE5110		•			
Code		WILESTIU					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 lab +
				seminar/laboratory	2 project
3.4 Total hours in the curriculum	60	Of which: 3.5 course	24	3.6	36
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					6
Evaluations					4
Other activities:				-	
0 = m		6.0			1

3.7 Total individual study hours	65
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	 OOP, Programming Fundamentals, Advanced Programming Methods
4.2. competencies	• Good programming skills in at least one of the programming languages Java, C#

5. Conditions (if necessary)

5.1. for the course	 Course hall with projector
5.2. for the seminar /lab	 Laboratory: computers and use of a programming language
activities	environment

6. Specific competencies acquired

Professional competencies	 C2.1 Identify adequate software systems development methodologies C1.2 Identify and explain specific test design techniques that correspond to a testing level. C1.3 Source code and goal oriented test elaboration in a well-known programming language C4.3 Identify models and methods adequate to real life problem solving. 	·•
Transversal competencies	 CT1 Apply rules to organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics. CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English. 	d

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Enhance the students understanding of testing and test design techniques. Provide the students with an environment in which they can explore the usage and usefulness of software testing and test design concepts in various business scenarios. Induce a realistic and industry driven view of software testing concepts and their inherent benefits.
7.2 Specific objective of the discipline	 Give students the ability to explore various test design techniques applied to different levels of testing. Improve the students' abilities to tackle on goal driven testing. Enhance the students understanding of test design techniques value in business. Students will be able to use various tools for the testing process (i.e., test management, test running, test reporting and bug reporting). Students will be able to design test cases according to an established testing goal and using specific test design technique in order to investigate the software.

8. Content

8.1 Course	Teaching methods	Remarks
 Software Testing. Test Design Techniques 1.1. Software Testing. Goals. Scope 1.2. Test Design Technique. Attributes 1.3. Taxonomy of Test Design Techniques 	 Interactive exposure Explanation. Conversation Didactical demonstration 	
2. Coverage-based Techniques I 2.1. Focus. Objectives 2.2. Tours. Logical Expressions	 Interactive exposure Explanation. Conversation Didactical demonstration 	
3. Coverage-based Techniques II 3.1. Specification-based Testing; 3.2. Requirements-based Testing;	 Interactive exposure Explanation. Conversation Didactical demonstration 	
4. Risk-based Techniques	 Interactive exposure 	

4.1. Focus. Objectives	• Explanation.
4.2. Quick-tests. History-based Testing. Usability Testing 4.3. HTSM. Failure modes	Conversation
4.5. HTSM. Failule modes	• Didactical
	demonstration
5. Activity-based Techniques	Interactive exposure
5.1. Focus. Objectives	• Explanation.
5.2. Guerilla Testing. All-pairs Testing	Conversation
5.3. Use Cases Testing. Scenario Testing	Didactical
Coverage-based Techniques vs Activity-based Techniques	demonstration
6. Evaluation-based Techniques	Interactive exposure
6.1. Focus. Objectives	Explanation
6.2. Function Equivalence Testing. Self-verifying data	• Conversation
	Didactical
	demonstration
7. Desired result-based Techniques	Interactive exposure
7.1. Focus. Objectives	• Explanation.
7.2. Confirmation Testing. User Acceptance Testing	Conversation
7.3. Desired-based Techniques vs Evaluation-based	Didactical
Techniques	demonstration
8. Tester-based Techniques	Interactive exposure
8.1. Focus. Objectives	• Explanation.
8.2. User Testing. Alpha Testing. Beta Testing	Conversation
8.3. Bug Bashes. Paired Testing.	Didactical
8.4. Coverage-based Techniques vs Tester-based	demonstration
Techniques	
9. Test Design Techniques Analysis	Interactive exposure
9.1. Tester-based Techniques vs Activity-based Techniques	• Explanation.
9.2. Risk-based Techniques vs Coverage-based Techniques	Conversation
9.3. Desired result-based Techniques vs Risk-based	Didactical
Techniques	demonstration
10. Security Testing	Interactive exposure
10.1.Terminology	• Explanation.
10.2.Types	Conversation
10.3.Advanced Techniques	Didactical
	demonstration
11. Bug Reporting	Interactive exposure
11.1.Challenges	 Conversation
11.2.RIMGEA Strategy	
12. Project Presentations	Interactive exposure
	Conversation

Bibliography

[Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Software, Wiley, 1999.

[Brn02] I. Burnstein, *Practical Software Testing*, Springer, 2002.

[Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002.

[Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004.

[Nai08] K. Naik, P. Tripathy, *Software testing and quality assurance. Theory and Practice*, A John Wiley & Sons, Inc., 2008.

[Crs09] L. Crispin, J. Grecory, *Agile testing: a practical guide for testers and agile teams*, Addison-Wesley, 2009.

[Pres10] R. S. Pressman, *Software engineering: a practinioner's approach*, seventh edition, Higher Education, 2010.

[BBST2008] BBST – Bug Advocacy,

http://www.testingeducation.org/BBST/bugadvocacy/BugAdvocacy2008.pdf

[BBST2010] BBST – Fundamentals of Testing, Cem Kaner,

http://www.testingeducation.org/BBST/foundations/BBSTFoundationsNov2010.pdf.

[BBST2011] BBST – Test Design, Cem Kaner,

http://www.testingeducation.org/BBST/testdesign/BBSTTestDesign2011pfinal.pdf

[Whitt2012] J. Whittaker, J. Arbon J. Carollo, How Google Tests Software, Google, Pearson Education, 2012.

[OWASP2014] QWASP, Testing guide 4.0, 2014, https://owasp.org/www-project-web-security-testingguide/assets/archive/OWASP Testing Guide v4.pdf

[NRVR2014] Ana Filipa Nogueira, José Carlos Ribeiro, Francisco Fernández de Vega, Mário Alberto Zenha-Rela, Object-Oriented Evolutionary Testing: A Review of Evolutionary Approaches to the Generation of Test Data for Object-Oriented Software, International Journal of Natural Computing Research 4(4):15-35, October, 2014.

[KMS2014] Kaur, Manpreet and Rupinder Singh. A Review of Software Testing Techniques, 2014.

[Meer2014] Joris Meerts, Functional Testing Heuritics,

https://www.testingreferences.com/docs/Functional Testing Heuristics.pdf

[Draghia2019] Claudiu Draghia, Gamificarea in software testing. Testing Challenges, http://testingchallenges.thetestingmap.org/, 2019.

[ForK2019] István Forgács, Attila Kovács, Practical Test Design Selection of traditional and automated test design techniques, BCS, 2019.

[BSR2021] F. A. Bhuiyan, M. B. Sharif and A. Rahman, Security Bug Report Usage for Software Vulnerability Research: A Systematic Mapping Study, IEEE Access, vol. 9, pp. 28471-28495, 2021, doi: 10.1109/ACCESS.2021.3058067.

[AIW2021] Samah W.G. AbuSalim, Rosziati Ibrahim, Jahari Abdul Wahab, Comparative Analysis of Software Testing Techniques for Mobile Applications, Journal of Physics: Conference Series, vol 1793, 2021.

[PLGM2022] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, Raymond J. Mooney, Learning to Describe Solutions for Bug Reports Based on Developer Discussions, ACL 2022, pp. 2935 – 2952.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Laboratory 1	Presentation, Conversation, Problematizations,	
Testing Project Setup	Discovery, Other	
	methods – individual study, exercises	
2. Laboratory 2	Presentation, Conversation, Problematizations,	
Coverage-based Techniques	Discovery, Other	
	methods – individual study, exercises	
3. Laboratory 3	Presentation, Conversation, Problematizations,	
Risk-based Techniques	Discovery, Other	
1	methods – individual study, exercises	
4. Laboratory 4	Presentation, Conversation, Problematizations,	
Test Automation Tools	Discovery, Other	
	methods – individual study, exercises	
5. Laboratory 5	Presentation, Conversation, Problematizations,	
Activity-based Techniques OR	Discovery, Other	
Desired result-based Techniques	methods – individual study, exercises	
6. Laboratory 6	Evaluation	
Project turn-in		
References:		

See references from Lectures.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to apply test design techniques for a software product, in a similar way they are used in industry.
- Students will be able to understand the differences between the goals and scope of the various test techniques applied to a software system.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Design and develop a testing solution (project) for a software product with focus on test design techniques. The corresponding grade is denoted by P.	Oral Examination	70%
10.5 Seminar/laboratory activities	Each lab activity will be graded. The arithmetic average of the grades is denoted by L.	Laboratory Activity	30%

Remark:

- Laboratory assignments will pe achieved in groups of 2-3 students.
- Testing project will pe achieved in groups of 4-5 students.

10.6 Minimum performance standards

- Students will be able to apply test design techniques according to established goals for a software system.
- Students will be able to unstandard the differences between software testing goal, scope, and test design technique concepts.
- The final grade (M) is computed as follows: M = 30%L + 70%P.
- At least $M \ge 5.00$ is favourable to pass this course exam.

Date

Signature of course coordinator

Signature of seminar coordinator

13.04.2023

Lect. PhD. Camelia Chisăliță-Crețu,

Lect. PhD. Camelia Chisăliță-Crețu,

Date of approval

Signature of the head of department

Prof. PhD. Laura Dioșan