1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Numerical Calculus							
2.2 Course coordinator Assoc. Prof. Teodora Catinas							
2.3 Seminar coordinator				Assoc. Prof. Teodora Catinas			
2.4. Year of	3	2.5	6	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2 lab
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					7
Evaluations					20
Other activities:					-
3.7 Total individual study hours 77					

5.7 Total marvidual study nouis	//
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	• Knowledge of main notions and procedures of numerical analysis and the ability to work with them. Programming skills in MATLAB for implementing numerical algorithms.

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab activities	• Laboratory with computers.

6. Specific competencies acquired

•• ~]	P • • • • • • •	
		C3.1 Description of concepts, theory and models used in application domain
nal cies	C3.2 Identify and explain the basic computer science models corresponding to application	
	domain	
	cie	C3.3 Use of computer science and mathematical models and tools for solving specific problems
sio		in the application field
fes pet	pet	C3.4 Data and model analysis
Professional competencies		C4.1 Defining basic concepts, theory and mathematical models
		C4.2 Interpretation of mathematical models
		C4.3 Identifying the appropriate models and methods for solving real-life problems
		C4.5 Embedding formal models in applications from various areas
		CT1 Application of efficient and organized work rules, of responsible attitudes towards the
Γ	es	didactic-scientific domain, to creatively value one's own potential, with the respect towards the
rsa	nci	principles and norms of professional etic.
Transversal competencies		CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities
		to value the knowledge, to adapt to requirements of a dynamic society and to communicate in
Γr_{i}	CON	Romanian language and in a language of international circulation.
r	•	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand and use basic concepts of Numerical Analysis Be able to implement numerical algorithms in order to solve practical problems.
7.2 Specific objective of the discipline	 Acquire theoretical and practical knowledge about the basic numerical algorithms regarding approximation of functions, numerical integration of functions, numerical solving of linear/nonlinear systems of equations and differential equations. Ability to apply numerical algorithms to solve practical and real life problems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introductive notions. Finite and divided	Exposure: description,	
differences (definitions and properties).	explanation, examples.	
Taylor's formula.		
2. Lagrange interpolation: interpolation	Exposure: description,	
polynomial, interpolation formula, study of	explanation, examples,	
the error.	proofs.	
3. Lagrange interpolation: Aitken's algorithm	Exposure: description,	
and Newton's formula.	explanation, examples.	
4. Hermite interpolation: interpolation	Exposure: description,	
polynomial, interpolation formula, study of	explanation, examples,	
the error. Hermite interpolation with double	proofs.	
nodes.	-	
5. Birkhoff interpolation: interpolation	Exposure: description,	
polynomial, interpolation formula, study of	explanation, examples,	
the error.	proofs.	
6. Spline interpolation method. Least squares	Exposure: description,	
approximation.	explanation, examples,	
	proofs, dialogue.	

7. Numerical differentiation and integration	Exposure: description,				
(introductive notions). Newton-Cotes	explanation, examples.				
quadrature formulas. Repeated quadrature					
formulas.					
8. Romberg's algorithm. Adaptive quadratures	Exposure: description,				
formulas. General quadrature formulas.	explanation, examples.				
Gauss-type quadrature formulas.					
9. Numerical methods for solving linear systems	Exposure: description,				
- direct methods (Gauss, Gauss-Jordan, LU-	explanation, examples.				
methods). Conditioning of a linear system.					
10. Numerical methods for solving linear systems	Exposure: description,				
- iterative methods (Jacobi, Gauss-Seidel,	explanation, examples.				
SOR).					
11. Methods for solving nonlinear equations in R:	Exposure: description,				
one-step methods (Newton (tangent) method,	explanation, examples,				
succesive approximation method).	proofs.				
12. Methods for solving nonlinear equations in R:	Exposure: description,				
multi-step methods (secant, bisection and	explanation, examples.				
false position methods). Inverse interpolation.					
Bibliography					
1. O. Agratini, I. Chiorean, Gh. Coman, R.T. Trîmbitaş, Analiză Numerică și Teoria Aproximării, vol.					
III, Ed. Presa Univ. Clujeană, 2002;					
2. R. L. Burden, J. D. Faires, Numerical Analysis, PWS Publishing Company, 1985.					
3. I. Chiorean, T. Cătinaș, R. Trîmbitaș, Analiză numerică, Ed. Presa Univ. Clujeană, 2010.					
4. Gh. Coman, T. Cătinaș, și alții, Interpolation operators, Ed. Casa Cărții de Știință, Cluj-Napoca,					

- **4.** Gh. Coman, T. Cătinaș, și alții, *Interpolation operators*, Ed. Casa Cărții de Știință, Cluj-Napoca, 2004.
- 5. Gh. Coman, I. Chiorean, T. Cătinaș, *Numerical Analysis. An Advanced Course*, Ed. Presa Univ. Clujeană, 2007.
- **6.** S. D. Conte, Carl de Boor, *ELEMENTARY NUMERICAL ANALYSIS. An Algorithmic Approach*, SIAM, 2017.
- 7. W. Gander, M.J. Gander, F. Kwok, Scientific Computing, Springer Internat. Publishing, 2014.
- 8. D.D. Stancu, Gh. Coman, O. Agratini, R. Trimbitas, *Analiză Numerică și Teoria Aproximării*, vol. I, Ed. Presa Univ. Clujeană, 2001;
- **9.** D.D. Stancu, Gh. Coman, P. Blaga, *Analiză Numerică și Teoria Aproximării*, vol. II, Ed. Presa Univ. Clujeană, 2002;
- 10. R. Trîmbitaş, Numerical Analysis, Ed. Presa Univ. Clujeană, 2007.

8.2 Laboratory	Teaching methods	Remarks
 Introductory examples and problems in Matlab. 	Explanation, dialogue.	
2. Problems with orthogonal polynomials and Taylor polynomials. Computation of finite and divided differences.	Explanation, dialogue, examples.	
3. Lagrange interpolation. Computation of Lagrange polynomial using barycentric formula.	Explanation, dialogue, practical examples.	
4. Applied problems to Lagrange interpolation using Aitken's algorithm and Newton's method.	Explanation, dialogue, practical examples. Evaluation.	
5. Applied problems to Hermite interpolation.	Explanation, dialogue, practical examples. Evaluation.	
6. Applied problems to spline interpolation.	Explanation, dialogue, practical examples. Evaluation.	

7. Applied problems to least squares approximation method.	Explanation, dialogue, practical examples.
8. Problems with simple and repeated	Explanation, dialogue,
integration formulas and with Romberg's algorithm.	examples. Evaluation.
9. Applied problems to Gauss type quadrature	Explanation, dialogue,
formulas and adaptive quadratures.	examples.
10. Solving linear systems using direct methods.	Explanation, dialogue,
Study of perturbations of a linear system.	examples. Evaluation.
11. Solving linear systems using iterative	Explanation, dialogue,
methods.	practical examples.
	Evaluation.
12. Solving nonlinear equations using one-step	Explanation, dialogue,
and multi-step methods.	practical examples.
	Evaluation.
Bibliography	

- 1 R. L. Burden, J. D. Faires, *Numerical Analysis*, PWS Publishing Company, 1985.
- 2 R. Trîmbitaş, *Numerical Analysis*, Ed. Presa Univ. Clujeană, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is important for seeing the application of mathematical knowledge in solving practical and real life problems.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principles of Numerical Analysis; apply the course concepts problem solving 	Written exam	70%
10.5 Seminar/lab activities	 be able to implement course concepts and algorithms apply techniques for different practical problems 	Evaluation and continuous observations during the semester.	30%
10.6 Minimum perform	mance standards		
At least grade	5 (from a scale of 1 to 10) at bo	th written exam and laboratory	/ work.

At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.			
Date	Signature of course coordinator	Signature of seminar coordinator	
15.04.2022	Conf. Dr. Teodora Cătinaș	Conf. Dr. Teodora Cătinaș	

Date of approval

Signature of the head of department

Prof. Dr. Octavian Agratini