SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeş Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Computer Science			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)			Computer vision and deep learning				
(ro)			Viziune computerizată și deep learning				
2.2 Course coordinator			Lect. PhD. Diana Laura Borza				
2.3 Seminar coordinator			Lect. PhD. Diana Laura Borza				
2.4. Year of study	3	2.5 Semester	5 2.6. Type of E 2.7 Type of Optional			Optional	
			evaluation discipline				
2.8 Code of the MLE5152							
discipline							

3. Total estimated time (hours/semester of didactic activities)

					1
3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 lab/
				seminar/laboratory	proj
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					4
Other activities:					
3.7 Total individual study hours		58			•
2.9 Total hours par somestor		100			

3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Linear Algebra
	Python programming
	Statistics
	Data structures and algorithms
4.2. competencies	• Average programming skills in a high-level programming
	language

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard and video projector.
5.2. for the seminar /lab	• Laboratory equipped with high-performance computers and having
activities	python installed.

6. Specific competencies acquired

P	te competencies acquirea
	• CE1.3 Using the methods, techniques and algorithms from AI in order to model several
	classes of problems
nal	• CE1.4 Identify and explain specific AI techniques and algorithms and using them to solve
sion	specific problems
lfess	• CE1.5 Integrating the models and the specific solutions from AI in dedicated applications
Professional competencies	• C4.2 Interpretation of mathematical models and computer science (formal)
	• C4.3 Identifying appropriate models and methods to solve real problems
	• C4.5 Incorporation of formal models in specific applications in various fields
	• CT1 Ability to conform to the requirements of organized and efficient work, to develop a
	responsible approach towards the academic and scientific fields, in order to make the most of
<i>v</i> o	one's own creative potential, while obeying the rules and principles of professional ethic
sal	
er: ten	• CT3 Using efficient methods and techniques for learning, information, research and
nsv	developing capabilities for using knowledge, for adapting to a dynamic society and for
Transversal competencies	communicating in Romanian and in a worldwide spoken language.
L 2	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	•	The goal of this course is to acquaint the students with the field of
discipline		computer vision from a deep learning perspective. The students will
		learn how to analyse, design, implement, and evaluate any complex
		computer vision problem. The course covers both image and video
		processing, including image classification, object detection, object
		tracking, action recognition, image stylization and synthetic data
		generation.

7.2 Specific objective of the	Understand various architectures of Convolutional Neural Networks
discipline	for image classification, object detection, video analysis, and synthetic
	visual data generation.
	• Solve and analyse a Computer Vision problem using a specific
	theoretical apparatus.
	• Understand and develop efficient fine-tuning strategies for increasing
	the performance of Convolutional Neural Networks with applications
	in the Computer Vision field.
	• Understand the metrics used to evaluate complex networks, as well as
	visualizing the features learned by the networks.

8. Content

8.1 Co		Teaching methods	Remarks
	Introduction to Computer Vision. Overview,	• Interactive exposure	
	history of computer vision, the three Rs of	Explanation	
	computer vision.	Conversation	
		Didactical	
		demonstration	
2.	Image classification pipeline. Image	• Interactive exposure	
	classification pipeline, image features, filters,	• Explanation	
	convolutions, linear classifiers.	Conversation	
		Didactical	
		demonstration	
3.	Shallow neural networks. Optimization and	 Interactive exposure 	
	loss functions.	 Explanation 	
		 Conversation 	
		Didactical	
		demonstration	
4.	Introduction to convolutional neural	• Interactive exposure	
	networks. Convolutional neural networks	 Explanation 	
	architectures. Elements of a convolutional	 Conversation 	
	convolutional neural network: convolutional	Didactical	
	layers, pooling layers, fully connected layer).	demonstration	
	Architectures: LeNet, AlexNet, VGG,		
	Inception, Resnet.	T	
5.	Training a neural network. Activation	• Interactive exposure	
	functions, weight initialization, hyperparameter	• Explanation	
	tuning, transfer learning.	Conversation	
		• Didactical demonstration	
6	Case study face analysis using convolutional		
0.	Case study: face analysis using convolutional neural networks. Multitask networks, triplet	Interactive exposureExplanation	
	loss function.	Conversation	
		Didactical	
		demonstration	
7	Image segmentation using convolutional	Interactive exposure	
/.	neural networks. Transposed convolutions,	Explanation	
	Fully convolutional neural networks, U-Net	Conversation	
	architecture.	Didactical	
		demonstration	

8. Generative networks. PixelRNN and	Interactive exposure
PixelCNN, Variational Autoencoders (VAE),	• Explanation
Generative Adversarial Networks (GAN).	• Conversation
	• Didactical
	demonstration
9. Object detection . Object detection, region	Interactive exposure
proposal, ROI pooling. Convolutional neural	Explanation
networks for object detection: Fast R-CNN,	• Conversation
Faster R-CNN, Mask-RCNN, YOLO, SSD	• Didactical
	demonstration
10. Graph convolutional neural networks.	Interactive exposure
	Explanation
	Conversation
	• Didactical
	demonstration
11. Sequence models. Attention and	Interactive exposure
transformers.	Explanation
	Conversation
	Didactical
	demonstration
12. Vision transformers. Self-supervised	Interactive exposure
learning.	• Explanation
	Conversation
	• Didactical
	demonstration
13. Case studies and demonstrations of state-of-	Interactive exposure
the-art algorithms. Ethics in artificial	• Explanation
intelligence. Debate.	• Conversation
	• Didactical
	demonstration
14. Project presentation	• Interactive
	exposure,
	conversation.

Bibliography

1. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.

2. Langr, Jakub, and Vladimir Bok. GANs in Action. (2018).

3. Trask, Andrew. *Grokking deep learning*. Manning Publications Co., 2019.

4. Prince, Simon JD. Computer vision: models, learning, and inference. Cambridge University Press, 2012.

6. Shapiro, Linda G., and George C. Stockman. *Computer vision*. Prentice Hall, 2001.

7. Müller, Andreas C., and Sarah Guido. *Introduction to machine learning with Python: a guide for data scientists.* " O'Reilly Media, Inc.", 2016.

8. Gulli, Antonio, and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

8.2 Laboratory	Teaching methods	Remarks
1. Strategies for solving computer vision	• Interactive exposure	The laboratory is
problems. Introduction to python and keras.	 Explanation 	structured as 2 hours per
	 Conversation 	week, every other week
	 Individual and 	
	group work	
	 Dialogue, debate 	
2. Convolutional neural networks (building	• Interactive exposure	

	· · · · · · · · · · · · · · · · · · ·	
blocks, simple architectures). Evaluation	Explanation	
metrics and visualization (Precision, Recall,	Conversation	
TPR, FPS, F1-Score, confusion matrix,	Individual and	
activation maps).	group work	
L '	• Dialogue, debate	
3. Optimization algorithms, unbalanced data, data	• Interactive exposure	
pre-processing, data generators in <i>keras</i> .	• Explanation	
Convolutional neural networks for instance	Conversation	
segmentation.	Individual and	
segmentation.	group work	
	• Dialogue, debate	
4 Laboratory assignment presentation Project		
4. Laboratory assignment presentation. Project	• Interactive exposure	
phase 1.	• Explanation	
	• Conversation	
	• Individual and	
	group work	
	• Dialogue, debate	
	• Interactive exposure	
5. Project phase 2	• Explanation	
	Conversation	
	Individual and	
	group work	
	• Dialogue, debate	
6. Project phase 3. Project presentation	• Interactive exposure	
······································	• Explanation	
	• Conversation	
	• Individual and	
	group work	
	• Dialogue, debate	
7. Evaluation (written examination)	• Quiz	
7. Evaluation (written examination)		
Project		
Phase 1	Interactive exposure	
	1	
- each student should pick (or propose) a computer	• Explanation	
vision problem for the project	• Conversation	
- discussion about the chosen projects	• Individual and	
- state of the art analysis (search for other methods that	group work	
solve the same problem)	Brainstorming	
- short presentation (by the teacher) of the possible		
computer vision project themes that could be solved		
using deep learning		
- presentation (by the teacher) of the methodology that		
needs to be followed for the project and of the		
available tools to achieve the project		
1 5		
Phase 2		
- establishing the methodology that needs to be		
followed to solve the project		
- data gathering, data pre-processing		
- selection of the appropriate network architectures		
selection of the appropriate network architectures		

Phase 3	
- design and implementation of the project	
- design and implementation of the project	
- evaluation metrics implementation	
- visualization	
- implementation cont'd, evaluation, fine-tuning	
- project delivery, presentation, demo	

Bibliography

1. Müller, Andreas C., and Sarah Guido. *Introduction to machine learning with Python: a guide for data scientists*. " O'Reilly Media, Inc.", 2016.

2. Gulli, Antonio, and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

3. Anderson, John. *Hands On Machine Learning with Python*. CreateSpace Independent Publishing Platform, 2018.

4. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors.
- The course exists in the studying program of all major universities in Romania and abroad.
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.

10. Evaluation

aluation methods 10.3 Share in the grade (%)	ria	10.1 Evaluation c	vity 10.	Type of activity
examination <u>at the</u> <u>ry</u> in the last week emester.	ling <u>l</u> ning o ply pts -life	 The student h good underst of the deep le concepts. The ability to the course co in solving a r computer vis problem. 	•	10.4 Course
ous observations l project 60% (30% laboratory assignments and 30% project)	esign, I and and a vision l on ble to ferent for the of a	 The specification, implementati evaluation computer problem bad deep learning The student i apply techniques improving performance deep learning 	r/lab activities •	10.5 Seminar/lab a
		deep learning	Im performance sta	10.6 Minimum pe

- Students must prove that they acquired an acceptable level of knowledge and understanding of the core concepts taught in the class, that they are capable of using this knowledge in a coherent form, that they have the ability to establish certain connections and to use the knowledge in solving various computer vision problems.
- > The final grade (average between written exam and project) should be at least 5 (no rounding)

Date	Signature of course coordinator	Signature of seminar coordinator	
30.04.2022	Lect. PhD. Diana Laura Borza	Lect. PhD. Diana Laura Borza	
Date of approval	Signature of the head of department		

.....

.....