SYLLABUS

1. Information regarding the programme

i interination regarang the programme			
1.1 Higher education institution	Babeş Bolyai University		
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Computer Science		
1.4 Field of study	Computer Science		
1.5 Study cycle	Bachelor		
1.6 Study programme / Qualification	Computer Science		

2. Information regarding the discipline

2.1 Name of the	2.1 Name of the discipline Functional and Logic Programming						
2.2 Course coordinator Prof.Dr. Horia F. Pop							
2.3 Seminar coordinator				Prof.Dr. Horia F. Pop			
2.4. Year of	2	2.5	3	2.6. Type of	С	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					22
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					27
Tutorship					11
Evaluations				16	
Other activities:					-
3.7 Total individual study hours		94			

5.7 Total mulvidual study nouis	74
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	• Fundamentals of Programming
	 Mathematical Foundations of Computer Science
4.2. competencies	• Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	 Students will attend the course with their mobile phones shut down Students will attend the course with their laptops shut down; students with special needs will discuss these at the beginning of the semester
5.2. for the seminar /lab activities	 Students will attend the lab with their mobile phones shut down Laboratory with computers; high level declarative programming language environment (CLisp, SWIProlog)

6. Specific competencies acquired

es Se	C1.1 Adequate description of programming paradigms and specific language mechanisms, as
ncie	well as identification of differences between semantic and syntactic aspects.
ssic	C1.3 Elaboration of adequate source codes and unitary testing of some components in a known
lfes	programming language, based on given design specifications.
Professional competencies	C1.5 Development of program units and elaboration of corresponding documentations.
C O	

	CT1 Application of efficient and organized work rules, of responsible attitudes towards the
ll	didactic-scientific domain, to creatively value one's own potential, with the respect towards the
Irsa	principles and norms of professional etic.
sve ete	CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities
ans	to value the knowledge, to adapt to requirements of a dynamic society and to communicate in
Transversal competencies	Romanian language and in a language of international circulation.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Get accustomed with basic notions, concepts, theories and models of new programming paradigms (functional and logic programming)
7.2 Specific objective of the discipline	• Get accustomed with a programming language for each of these paradigms (Common Lisp and Turbo Prolog)
1	• Acquire the idea of using these programming paradigms based on the applications' necessities
	• Assure the necessary base for approaching certain advanced courses
	• Ability to apply declarative programming techniques to different real life problems
	• Ability to model phenomena using declarative techniques
	• Improved programming abilities using the declarative paradigm

8. Content

	Course	Teaching methods	Remarks
1.	Basic elements of Prolog. Facts and rules in Prolog. Goals. The control strategy in Prolog. Variables and composed propositions. Anonymous variables. Rules for matching. The flow model. Sections of a Prolog program. Examples	Exposure: description, explanation, examples, discussion of case studies	
2.	The Prolog program. Predefined domains. Internal and external goals. Multiple arity predicates. The IF symbol (Prolog) and the IF instruction (other languages). Compiler directives. Arithmetic expressions and comparisons. Input/output operations. Strings	Exposure: description, explanation, examples, discussion of case studies	
3.	Backtracking. The backtracking control. The "fail" and "!"(cut) predicates. Using the "!" predicate. Type of cuts. The "not" predicate. Lists in Prolog. Recursion. Examples for backtracking in Prolog. Finding all solutions in the same time. Examples of predicates in Prolog. Non-deterministic predicates	Exposure: description, explanation, examples, discussion of case studies	
4.		Exposure: description, explanation, examples, discussion of case studies	
5.	Recursive data structures. Trees as data structures. Creating and traversing a tree. Search trees. The internal database of Prolog. The "database" section. Declaration of the internal	Exposure: description, explanation, examples, discussion of case studies	

	database. Predicates concerning operations with		
6	the internal database. Advanced issues of Backtracking in Prolog. Files	Exposure: description,	
0.	management in Prolog.	explanation, examples,	
	management in 1 1010g.	proofs, debate, dialogue	
7	Programming and programming languages.	Exposure: description,	
/.	Imperative programming vs. declarative	explanation, examples,	
	programming. Introduction. The importance of	discussion of case studies	
	the functional programming as a new	discussion of cuse studies	
	programming methodology. History and		
	presentation of LISP		
8.	Basic elements in Lisp. Dynamic data structures.	Exposure: description,	
0.	Syntactic and semantic rules. Functions'	explanation, examples,	
	classification in Lisp. Primitive functions in	discussion of case studies	
	Lisp. Basic predicates in Lisp.		
	Predicates for lists; for numbers. Logic and	Exposure: description,	
	arithmetic functions. Defining user functions.	explanation, examples,	
	The conditional form. The collecting variable	discussion of case studies	
	method. Examples		
10.	Symbols' managing. Other functions for lists'	Exposure: description,	
	accessing. OBLIST and ALIST. Destructive	explanation, examples,	
	functions. Comparisons. Other interesting	discussion of case studies	
	functions. Examples		
11.	Definitional mechanisms. The EVAL form.	Exposure: description,	
	Functional forms; the functions FUNCALL and	explanation, examples,	
	APPLY. LAMBDA expressions, LABEL	discussion of case studies	
	expressions. Generators, functional arguments.		
-	MAP functions. Iterative forms. Examples		
12.	Other elements in Lisp. Data structures. Macro-	Exposure: description,	
	definitions. Optional arguments. Examples	explanation, examples,	
		discussion of case studies	
	-14. Graded paper in Logic and Functional	Written test	
	Programming		
Bit	bliography		
1	CZIPLU A C DOD H E Elemente avangate de pr	agramara in Lian si Prolog	Anlightii in Inteligente
1.	CZIBULA G., POP H.F., Elemente avansate de pr Artificiala, Editura Albastra, Cluj-Napoca, 2012	ogramate in Lisp si Flolog.	Apricatii in inteligenta
2	POP H.F., SERBAN G., Programare in Inteligenta	Artificiala - Lisp si Prolog	Editura Albastra
2.	ClujNapoca, 2003	Artificiala - Lisp si i folog,	Luitura Albastra,
3.	http://www.ifcomputer.com/PrologCourse, Lectury	e on Prolog	
	http://www.lpa.co.uk, Logic Programming		
	FIELD A., Functional Programming, Addison We	slev New York 1988	
6.	WINSTON P.H., Lisp, Addison Wesley, New Yor		
-	Seminar	Teaching methods	Remarks
	Recursion	Explanation	
51.		Conversation	
		ModellingCase studies	
52	Lists in Drolog		
52.	Lists in Prolog	 Explanation 	
		Conversation	
		• Modelling	
		Case studies	
\$3.	Processing of heterogeneous lists in Prolog	• Explanation	
		Conversation	

	Modelling
	5
	Case studies
S4. Backtracking in Prolog	Explanation
	Conversation
	Modelling
	Case studies
S5. Lists processing in LISP	Explanation
	Conversation
	Modelling
	Case studies
S6. MAP functions in LISP	Explanation
	Conversation
	Modelling
	Case studies
S7. Recap	Explanation
	Conversation
	Modelling
	Case studies

Bibliography

- 1. CZIBULA G., POP H.F., Elemente avansate de programare in Lisp si Prolog. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj-Napoca, 2012
- 2. Product documentation: Gold Common Lisp 1.01 si 4.30, XLisp, Free Lisp.
- 3. Product documentation: Turbo Prolog 2.0, Logic Explorer, Sicstus Prolog.
- 4. http://www.swi-prolog.org

4. http://www.swi-prolog.org			
8.3 Laboratory	Teaching methods	Remarks	
Lab 1: Recursive algorithms in Pseudocode	Explanation, dialogue,	Problem given at lab 1	
	testing data discussion,	and submitted at lab 1	
	case studies		
Lab 2: Lists in Prolog	Explanation, dialogue,	Problem given at lab 1	
	testing data discussion,	and submitted at lab 2	
	case studies		
Lab 3: Trees in Prolog. Lists management in Prolog.	Explanation, dialogue,	Problem given at lab 2	
	testing data discussion,	and submitted at lab 3	
	case studies		
Lab 4: Backtracking in Prolog	Explanation, dialogue,	Problem given at lab 3	
	testing data discussion,	and submitted at lab 4	
	case studies		
Lab 4: Practical test in Prolog	Practical test	One hour	
Lab 5: Recursive programming in Lisp	Explanation, dialogue,	Problem given at lab 4	
	testing data discussion,	and submitted at lab 5	
	case studies		
Lab 6: Using MAP functions in Lisp.	Explanation, dialogue,	Problem given at lab 5	
	testing data discussion,	and submitted at lab 6	
	case studies		
Lab 7: Practical test in Lisp	Practical test	One hour	
Dibliggraphy			

Bibliography

- 7. CZIBULA G., POP H.F., Elemente avansate de programare in Lisp si Prolog. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj-Napoca, 2012
- 8. Product documentation: Gold Common Lisp 1.01 si 4.30, XLisp, Free Lisp.
- 9. Product documentation: Turbo Prolog 2.0, Logic Explorer, Sicstus Prolog.
- 10. http://www.swi-prolog.org

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science • studies;
- The course exists in the studying program of all major universities in Romania and abroad; •
- The content of the course is concordant with partial competencies for possible occupations from the • Grid 1 - RNCIS.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written test in Logic and Functional Programming	60%
10.5 Seminar activi	ties - activity at seminaries	Evaluation of seminaries activity	10%
10.6 Lab activities	- be able to implement course concepts and	Programs documentation and delivery	10%
	algorithms - apply techniques for different classes of programming languages	Practical test in Prolog (one hour at lab 4)	10%
		Practical test in Lisp (one hour at lab 7)	10%
of the subje the ability to ➤ In order to p scale of 1 to	formance standards int has to prove that (s)he acquired an ct, that (s)he is capable of stating thes be establish certain connections and to bass the course, the following minimal b 10) at the written test; at least grade age, attendance of at least 5 seminars	se knowledge in a coherent f use the knowledge in solving criteria apply collectively: at 5 (from a scale of 1 to 10) c	orm, that (s)he has g different problems. least grade 5 (from a omputed as final
Date	Signature of course coordinator	Signature of seminar	coordinator
27.04.2022	Prof. Dr. Horia F. POP	Prof. Dr. Horia F. POP	
Date of approval Signature of the l		Signature of the head	l of department

.....

Prof. Dr. Laura Dioșan