SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University	
institution	Dabeş Doryal Oniversity	
1.2 Faculty	Faculty of Mathematics and Computer Science	
1.3 Department	Department of Computer Science	
1.4 Field of study	Computer Science	
1.5 Study cycle	Bachelor	
1.6 Study programme /	Computer Science	
Qualification		

2. Information regarding the discipline

2.1 Name of the discipline C				mputer Networks			
2.2 Course coordinator				PhD. Assoc. Prof. Adrian Sergiu DARABANT			
2.3 Seminar coordinator				PhD. Assoc. Prof. Adrian Sergiu DARABANT			
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	3.2 Of which: course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	3.5 Of which: course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					11
Evaluations				13	
Other activities:				-	
3.7 Total individual study hours 94					1

5.7 Total mulvidual study nours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Computer Networks, Operating Systems, Computer System Architecture
4.2. competencies	• Good knowledge of TCP/IP, basis of network security, data encryption algorithms.

5. Conditions (if necessary)

5.1. for the course	Classroom with network and Internet access and to laboratory
	equipment.

6. Specific competencies acquired

Professional competencies	 C6.1 Identification of basic concepts and models in computer networks and computer systems C6.2 Identification and explanation of basic architectures for systems and computer networks management. C6.5 Implementation of computer networking projects.
Transversal competencies	 CT1 Applying organized and efficient work rules, responsible attitude towards scientific/ teaching domains in order to obtain a creative exploitation of own potential, while respecting the principles and rules of professional ethics CT3 Use of effective methods and techniques for learning, information, research and capacity to exploit knowledge, to adapt to a dynamic society and communication in Romanian language and in a foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Be able to understand the fundamental principles and inner workings of a computer network and of Internet
7.2 Specific objective of the discipline	 Learning the underlying concepts and principles of modern computer networks with emphasis on protocols, architectures, and implementation issues; Learning to program networking applications using TCP/IP Learning and understand the layered Internet protocols architecture Have all the basis knowledge about TCP/IP – theoretical aspects and programming communicating applications

8. Content

8.1 Course	Teaching methods	Remarks
1. Computer Networks Introduction. Definition.	Exposure: description,	
Examples. Network Topologies.	explanation,	
2. The socket programming API. Network	Exposure: description,	
programming using TCP and UDP.	explanation, examples,	
3. Protocols: definition. Protocol layers. The	Exposure: description,	
OSI reference model. The TCP/IP layered	explanation, examples, debate,	
model.	dialogue	
4. The functions and services of the IP layer.	Exposure: description,	
Structure of an IP datagram. IP addressing	explanation, examples,	
(classfull). Datagram check summing. The	discussion of case studies	
ARP protocol.		
5. The concept of Subnetworks and	Exposure: description,	
Supernetworks. CIDR. Network masks.	explanation, examples, proofs	
6. The UDP protocol and services. The structure	Exposure: description,	
of an UDP datagram UDP ports and	explanation, examples,	
processes.		

7. The TCP protocol. Structure of a TCP segment. Principles of TCP data	Exposure: description, explanation, discussion of case
transmission.	studies
8. The TCP Sliding Window mechanism. Flow	Exposure: description,
Control. Congestion avoidance.	explanation, examples
9. Broadcast and multicast communication. The	Exposure: description,
ICMP protocol. Error and network state	explanation, examples,
signaling.	discussion of case studies
10. The application layer. HTTP, SMTP, FTP	Exposure: description,
	explanation, examples, debate
11. The Internet Domain Name System. The	Exposure: description,
DNS protocol.	explanation, examples,
	discussion of case studies
12. Network routing. Distance based and link	Exposure: description,
state based routing algorithms. Routing	explanation, examples,
protocols: RIP, BGP, OSPF.	discussion of case studies
13. The physical layer. Transmission media.	Exposure: description,
Characteristics, fiber networks, wireless	explanation, examples,
networks.	discussion of case studies
14. Error detection and correction.	Exposure: description, examples,
	discussion of case studies,
Bibliography	

Bibliography

- 1. J. Kurose, K. Ross, Computer Networking: A Top Down Approach, Addison-Wesley, rev2,3,4 2002-2007.
- 2. Douglas E. Comer, Internetworking with TCP/IP
 - a. Vol 1- Principles, Protocols, and Architecture
 - b. Vol 3- Client-Server Programming and Applications
- 3. G.R.Wright, R. Stevens, TCP/IP Illustrated vol 1,2, Addison Wesley.
- 4. Matt Naugle, Illustrated TCP/IP A Graphic Guide to protocol suite, John Willey & Sons, 1999.
- 5. W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking API
- 6. Peterson, Larry Davie, Bruce: Computer Networks: A Systems Approach. Morgan Kaufman, (3rd ed.), 2003.
- 7. Stallings, William: Data and Computer Communications. Prentice Hall, (6th ed.), 2000.
- 8. Tanenbaum, Andrew S.: Computer Networks. Prentice Hall, (4th ed.), 2003.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Laboratory Configuration. Necessary tools,	Explanation, dialogue, case	
Virtual machines and build systems;	studies, example, proofs	
2. A simple client-server TCP application;	Dialogue, debate, case studies	
3. Concurrent TCP client-server applications;	Dialogue, debate, case studies,	
	examples, proofs	
4. Concurrent Multiplexed TCP- Servers. The select	Dialogue, debate, case studies,	
call. Network debugging – wireshark	examples	
5. Simple UDP client-server;	Dialogue, debate, case studies,	
	examples	
6. Complex/Concurrent UDP applications. Ping.	Dialogue, debate, case studies,	
Traceroute. Ipconfig/ifconfig.	examples	
7. Mid term evaluation;	Dialogue, debate, case studies,	
	examples	
8. Network Simulation. Packet Tracer installation.	Explanation, dialogue, case	
	studies	
9. Packet Tracer simple network simulation.	Explanation, dialogue, case	
	studies, examples	

10. Packet Tracer - Physical/logical network design.	Explanation, dialogue, case
	studies, examples
11. Packet Tracer – NAT	Testing data, discussion,
	evaluation
12. Packet Tracer – RIP Routing	Explanation, dialogue, case
	studies
13. Packet Tracer – Complex design	discussion, evaluation
14. Lab Evaluation.	Explanation, dialogue, case
	studies

Bibliography

- 1. Douglas E. Comer, Internetworking with TCP/IP Vol 3- Client-Server Programming and Applications
- 2. W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking API
- 3. Cisco Networking Academy Classes, http://cisco.netacad.net

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course covers the most important aspects necessary for a network engineer/architect in a network specialized company.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in
		methods	the grade (%)
10.4 Course	- know the basic principle of	Written exam-	50%
	computer networks theory;	Moodle Test	
	- apply the course concepts		
	- problem solving		
10.5 Seminar/lab	- TCP/IP programming skills and	-Mid-term and final	50%
activities	network simulation knowledge	term lab tests	
10.6 Minimum performance standards			
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory assessments.			
Date Signature of course coordinator		Signature of seminar coordinator	

03.05.2020 Assoc Prof. PhD Adrian Sergiu DARABANT Assoc Prof PhD Adrian Sergiu DARABANT

Date of approval

Signature of the head of department

.....

.....