SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Dynamical Systems							
2.2 Course coordinator Conf. dr. Adriana Buică							
2.3 Seminar coordinator Conf				Conf. dr. Adriana Buică			
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	DC
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					14
Additional documentation (in libraries, on electronic platforms, field documentation)					8
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					28
Evaluations					6
Other activities:					-

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis, Linear Algebra, Basics of Geometry,
	Basics of Physics
4.2. competencies	Derivation and integration, Taylor expansion, properties of real
	functions, eigenvalues, the Kernel of a linear map, the main
	quadratic curves, the Newton's second law of motion

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard
---------------------	---------------------------

5.2. for the seminar /lab	Computers for the laboratory activity
activities	

6. Specific competencies acquired

or special	ne competencies acquired
Professional competencies	C4.5 The incorporation of formal models in specific applications from different domains
Transversal competencies	 CT1 The application of the rules of organized and efficient work, of responsible attitudes toward the didactic-scientific domain, for the creative valorization of their own potential, respecting the principles and the norms of the professional ethic. CT3 The use of some efficient methods and techniques to learn, to inform themselves, to do research and to develop the abilities for the valorization of their knowledges, to adapt to a dynamical society, and to communicate.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Introduction to the basic problems of dynamical systems theory as well as the discussion of some related formal models
7.2 Specific objective of the discipline	To understand the concepts of equilibrium point, orbit, periodic orbit, stability, chaos and to operate with them at least in some simple situations.

8. Content

8.1 Course		Teaching methods	Remarks
	 Introduction to differe (notions, initial conditi conditions, examples, problems) 	ons, boundary • Explanation	
	2. Linear differential equand uniqueness theorems)		
	3. Linear differential equiconstant coefficients.	 Interactive exposure Explanation Conversation Didactical demonstration 	
	 Linear differential equ Applications (Newton' Pendulum equation, H oscillations) 	s law of cooling, • Explanation	

Cooley first and a linear differential	T
5. Scalar first order linear differential	• Interactive exposure
equations	Explanation
	Conversation
	Didactical
	demonstration
6. Linear differential systems	• Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
7. The dynamical system generated by a	Interactive exposure
differential equation (main notions	Explanation
and first examples). Phase portraits of	Conversation
scalar equations.	Didactical
	demonstration
8. Stability of equilibria (definition,	Interactive exposure
examples, stability of linear systems,	• Explanation
the linearization method). The	• Conversation
nonlinear pendulum equation.	Didactical
	demonstration
9. Phase portraits of planar systems.	Interactive exposure
' ' '	• Explanation
	• Conversation
	Didactical
	demonstration
10. Numerical methods for ordinary	Interactive exposure
differential equations (Euler and	• Explanation
Runge-Kutta numerical formulas)	• Conversation
, , , , , , , , , , , , , , , , , , ,	Didactical
	demonstration
11. Linear recurrences (difference	Interactive exposure
equations) with constant coefficients	• Explanation
(fundamental theorems, Fibonacci	• Conversation
sequence)	Did it is
' '	Didactical demonstration
12 Linear systems of difference	
12. Linear systems of difference equations (convergent matrix,	• Interactive exposure
complex notation)	• Explanation
complex notation	• Conversation
	Didactical domanstration
12 Neplineau aplandiante di mancial	demonstration
13. Nonlinear scalar discrete dynamical	• Interactive exposure
systems (notions, examples, stability of a fixed point)	• Explanation
οι α τίχεα ροιτίε)	• Conversation
	• Didactical
14. The legistic maps. Fully waves wise!	demonstration
14. The logistic map. Euler numerical formula revisited.	• Interactive exposure
iorifiula revisited.	• Explanation
	• Conversation
	Didactical
Dil II	demonstration
Bibliography	1 1 . / 1 . /1 . 1.
1. The webpage of the course http://www.math.ub	ociuj.ro/~abuica/dynsys.htm

- 2. A. Buică, Lecture notes posted in Teams
- 3. S.E. Elaydi, Discrete Chaos: with applications in science and engineering, CRC Press, 2008.
- 4. J. Hale, H. Kocak, Dynamics and Bifurcations, Springer, 1991.
- 5. M.W. Hirsch, S. Smale, R.L. Devaney, Differential Equations, Dynamical Systems and an Introduction to Chaos, Academic Press, 2004.

6. R.Precup, Ecuatii diferentiale, Risoprint, Cluj-Napoca, 2011.

9.2 Saminar / Jaharatary		Remarks
8.2 Seminar / laboratory	Teaching methods	Kemarks
Seminar 1. Linear homogeneous differential equations	• Explanation	
with constant coefficients. General solutions and	• Conversation	
properties of solutions (periodicity, oscillations,	Didactical	
boundedness)	demonstration	
Laboratory 1. Introduction to Maple. Basic notions.	Explanation	
, ·	• Conversation	
	Didactical	
	demonstration	<u> </u>
Seminar 2. Linear differential equations (the method of	Explanation	
undetermined coefficients, the Lagrange method).	• Conversation	
	Didactical	
	demonstration	
Laboratory 2. The use of Maple to find the general solution	Explanation	
of linear differential equations, to solve initial and	• Conversation	
boundary value problems and to study the properties of	Didactical	
solutions	demonstration	
Seminar 3. Linear differential equations. Test.	Explanation	
	Conversation	
	Didactical	
	demonstration	
Laboratory 3. The use of Maple to find the general solution	Explanation	
to Euler equations and to linear systems. Power series	• Conversation	
method.		
The choose	• Didactical	
	demonstration	
Seminar 4. Phase portraits of scalar nonlinear dynamical	Explanation	
systems and planar linear systems.	• Conversation	
	Didactical	
	demonstration	
Laboratory 4. Orbits and direction fields of planar systems.	Explanation	
, , , , , , , , , , , , , , , , , , , ,	• Conversation	
	• Didactical	
	demonstration	
Seminar 5. Stability of linear systems and of equilibria of	Explanation	
nonlinear systems.	Conversation	
	Didactical	
	demonstration	
Laboratory 5. First integrals of planar systems around	Explanation	
equilibria of center type.	• Conversation	
1,		
	• Didactical	
	demonstration	
Seminar 6. Test. Introduction to linear recurrences.	Explanation	

	Conversation Didactical demonstration
Laboratory 6. Numerical methods. Nonlinear scalar maps.	 Explanation Conversation Didactical demonstration
Seminar 7. Linear recurrences. Nonlinear scalar maps.	 Explanation Conversation Didactical demonstration
Laboratory 7. Test.	Examination

Bibliography

- 1. The webpage of the course http://www.math.ubbcluj.ro/~abuica/dynsys.htm
- 2. A. Buică, Lecture notes posted in Teams
- 3. S. Lynch, Dynamical systems with applications using MAPLE, Birkhauser, 2001.
- 4. Gh. Micula, P. Pavel, Ecuatii diferentiale si integrale prin probleme si exercitii, Ed. Dacia, Cluj-Napoca,1989
- 5. R. Precup, Ecuatii diferentiale, Risoprint, Cluj-Napoca, 2011.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is synchronized with the curriculum of most of the important universities from our country and from abroad where the applied mathematics plays an important role.

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• To know the notions and their properties by examples or counterexamples. To be able to apply the theoretical results in concrete problems.	Exam	60%
10.5 Seminar/lab activities	• Solving problems skills	Two tests	20%
	• Interest and implication in each lab activity. One final test in the last lab.	Dialogue in each lab and one final test	20%
10 (Minimum and ann an	•		

10.6 Minimum performance standards

• Presence at least at 90% from the lab activities, Presence at least at 75% from the seminar activities, at least 10% points from the lab activity, at least 15% points from the written final exam and the minimum passing grade is 5.

15-04-2022 Date of approval Conf. dr. Adriana Buică

uică Conf. dr. Adriana Buică Signature of the head of department

15-04-2022

Prof. dr. Octavian Agratini