
SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeş-Bolyai University of Cluj-Napoca

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Departament Departament of Computer Science

1.4 Field of study Computer Science

1.5 Study Cycle Bachelor

1.6 Study Cycle /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline Fundamentals of Programming

2.2 Course coordinator Lect. PhD. Molnar Arthur

2.3 Seminar coordinator Lect. PhD. Molnar Arthur

2.4 Year of

study

1 2.5 Semester 1 2.6. Type of

evaluation

E 2.7. Type of

discipline

Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 6 Of which: 3.2 course 2 3.3 seminar/laboratory 2 sem

2 lab

3.4 Total hours in the curriculum 84 Of which: 3.5 course 28 3.6 seminar/laboratory 56

Time allotment: hours

Learning using manual, course support, bibliography, course notes 14

Additional documentation (in libraries, on electronic platforms, field documentation) 12

Preparation for seminars/labs, homework, papers, portfolios and essays 14

Tutorship 8

Evaluations 18

Other activities:

3.7 Total individual study hours 66

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1 curriculum -

4.2 competencies -

5. Conditions (if necessary)

5.1 For the course Class room with projector

5.2 For the seminar/lab

activities

 Laboratory with computers;

 Python programming language and environment

6. Specific competencies acquired
P

ro
fe

ss
io

n
a
l

co
m

p
et

en
ci

es

 C1.1 Description of programming paradigms and of language specific mechanisms, as well

as identification of syntactic and semantic differences.

 C1.2 Explanation of existing software applications, on different levels of abstraction

(architecture, classes, methods) using adequate basic knowledge.

 C1.3 Elaboration of adequate source code and testing of components in a given programming

language, based on given specifications.

 C1.4 Testing applications based on testing plans.

 C1.5 Developing units of programs and corresponding documentation.

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es
  CT1 Application of efficient and rigorous working rules, manifest responsible attitudes

towards the scientific and didactic fields, respecting professional and ethical principles.

 CT2 Use of efficient methods and techniques for learning, information, research and

development of abilities for knowledge exploitation, for adapting to the needs of a dynamic

society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Lecture Teaching methods Remarks

1. Introduction to software development processes

 What is programming: algorithm, program, basic elements of the

Python language, Python interpreter, basic roles in software

engineering

 How to write programs: problem statement, requirements, feature

driven development process

 Example: calculator, iteration modelling

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

2. Procedural programming

 Compound types: list, tuple, dictionary

 Functions: test cases, definition, variable scope, calling, parameter

passing

 Test-driven development (TDD) steps, refactoring

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

3. Modular programming

 What is a module: Python module definition, variable scope in a

module, packages, standard module libraries, deployment

 Interactive

exposure

 Explanation

7.1 General objective of

the discipline

To know the basic concepts of software engineering (design,

implementation and maintenance

7.2 Specific objectives of

the discipline

 To know the key concepts of programming

 To know the basic concepts of software engineering (design,

implementation and maintenance of software systems).

 To gain understanding of basic software tools used in development and

testing.

 To learn Python programming language, and to get used to Python

programming, running, testing, and debugging programs.

 To acquire and improve their individual programming style.

 How to organize source code: responsibilities, single responsibility

principle, separation of concerns, dependency, coupling, cohesion

 Common layers in an information system - logical architecture

 Eclipse + PyDev

 Conversation

 Examples

 Didactical

demonstration

4. User defined types

 How to define new data types: encapsulation, information hiding

(data hiding in Python), guidelines, abstract data types

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

5. Design guidelines

 Problem statement: a program for managing information (CRUD

operations)

 Layered architecture: UI layer, application layer, domain layer,

infrastructure layer

 GRASP patterns

 Example of application development: entity, validator, repository,

controller

 Principles: information expert, low coupling, high cohesion,

protected variation, single responsibility, dependency injection

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

6. Object based programming

 Objects and classes: classes, objects, fields, methods, special class

methods (operator overloading), Python scope and namespace

 UML Diagrams: class diagrams, relationships, associations,

invariants

 Inheritance: UML generalization, code reuse, overriding, inheritance

in Python

 Exceptions

 Example: working with files in Python, repository implementations

using files

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

7. Program design

 Top down and bottom up strategies: top down design, bottom up

design, bottom up programming style, mixed approach

 Organizing the UI

 Class invariants

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

8. Program testing and inspection

 Testing methods: exhaustive testing, black box testing, white box

testing

 Testing levels: unit testing, integration testing

 Automated testing, TDD

 Program inspection: coding style, refactoring

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

9. Recursion

 Notion of recursion

 Direct and indirect recursion

 Examples

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

10. Algorithm complexity

 Empiric analysis and asymptotic analysis

 Asymptotic notation: big-o, little-o, big-omega, little-omega, theta;

properties

 Examples of magnitude orders

 Comparison of algorithms from an efficiency point of view

 Structural complexity

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

11. Searching. Sorting.

 Specification of the searching/sorting problem

 Search methods: sequential, binary.

 Sort methods: BubbleSort, SelectionSort, InsertionSort, QuickSort,

MergeSort

 Complexity of searching/sorting algorithms

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

12. Problem solving methods (I)

 General presentation of the Greedy and Backtracking methods

 Algorithms and complexity

Examples

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

13. Problem solving methods (II)

 General presentation of the Divide & Conquer and Dynamic

Programming methods

 Algorithms and complexity

 Examples

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

14. Revision

 Revision of most important topics covered by the course

 Exam guide

 Interactive

exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

Bibliography

1. Kent Beck - Test Driven Development: By Example. Addison-Wesley Longman, 2002.

2. Kleinberg and Tardos – Algorithm Design. Pearson Educational, 2014

(http://www.cs.princeton.edu/~wayne/kleinberg-tardos/)

3. Martin Fowler - Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999.

(http://refactoring.com/catalog/index.html)

4. Frentiu, M., H.F. Pop, Serban G. - Programming Fundamentals, Cluj University Press, 2006

5. The Python language reference. (https://docs.python.org/3/reference/index.html)

6. The Python standard library. (https://docs.python.org/3/library/index.html)

7. The Python tutorial. (https://docs.python.org/3/tutorial/index.html)

8.2 Seminar Teaching Methods Remarks

1. Introduction to Python. Simple problems  Interactive

exposure

The

seminar is 2. Procedural Programming

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/
http://refactoring.com/catalog/index.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/index.html

3. Modular Programming (I)  Explanation

 Conversation

 Didactical

demonstration

structured

as a weekly

2 hour

class.

4. Modular Programming (II)

5. Object Based Programming

6. User Defined Types

7. Program Design (I). Layered Architecture

8. Program Design (II). Layered Architecture

9. Program Design (III). Inspection and Testing

10. Recursion. Algorithm Complexity

11. Searching. Sorting.

12. Program Design Recap

13. Problem Solving Methods: Greedy, Divide & Conquer

14. Problem Solving Methods: Backtracking, Dynamic

Programming

Bibliography

1. Kent Beck - Test Driven Development: By Example. Addison-Wesley Longman, 2002.

2. Kleinberg and Tardos – Algorithm Design. Pearson Educational, 2014

(http://www.cs.princeton.edu/~wayne/kleinberg-tardos/)

3. Martin Fowler - Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999.

(http://refactoring.com/catalog/index.html)

4. Frentiu, M., H.F. Pop, Serban G. - Programming Fundamentals, Cluj University Press, 2006

5. The Python language reference. (https://docs.python.org/3/reference/index.html)

6. The Python standard library. (https://docs.python.org/3/library/index.html)

7. The Python tutorial. (https://docs.python.org/3/tutorial/index.html)

8.3 Laboratory Teaching Methods Remarks

1. Simple Python program

 Explanation

 Conversation

 The lab is

structured as

weekly 2 hour

classes.

 Laboratory

assignments are

due 1 week after

assignment.

2. Feature-driven software development process (I)

3. Feature-driven software development process (II)

4. Feature-driven software development process (III)

5. Laboratory test

6. Layered architecture (I)

7. Layered architecture (II)

8. Layered architecture (III)

9. Text Files

10. Program Testing

11. Algorithm Complexity

12. Problem Solving Methods

13. Laboratory test – practical exam simulation

14. Assignment delivery time

Bibliography

1. Kent Beck - Test Driven Development: By Example. Addison-Wesley Longman, 2002.

2. Kleinberg and Tardos – Algorithm Design. Pearson Educational, 2014

(http://www.cs.princeton.edu/~wayne/kleinberg-tardos/)

3. Martin Fowler - Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999.

(http://refactoring.com/catalog/index.html)

4. Frentiu, M., H.F. Pop, Serban G. - Programming Fundamentals, Cluj University Press, 2006

5. The Python language reference. (https://docs.python.org/3/reference/index.html)

6. The Python standard library. (https://docs.python.org/3/library/index.html)

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/
http://refactoring.com/catalog/index.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/index.html
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/
http://refactoring.com/catalog/index.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html

7. The Python tutorial. (https://docs.python.org/3/tutorial/index.html)

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program.

The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.

The course exists in the studying program of all major universities in Romania and abroad.

The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Type of activity 10.1 Evaluation Criteria 10.2 Evaluation Methods 10.3 Share in the

grade (%)

10.4 Lecture The correctness and

completeness of the

accumulated knowledge and

the capacity to design and

implement correct Python

programs

Written exam (during the

regular session)
40%

10.5 Seminar/

Laboratory

Be able to design, test and

debug a Python program

Practical evaluation (in

the regular session)
30%

Correctness of delivered

laboratory assignments and

documentation

Program and

documentation portfolio

30%

10.6 Minimum performance standards

 Students must observe the standards of academic integrity.

 Each student has to prove that they acquired an acceptable level of knowledge and understanding

of the core concepts taught in the class, that they are capable of using knowledge in a coherent

form, that they have the ability to establish certain connections and to use the knowledge in

solving different problems in programming.

 Successfully passing the exam is conditioned by a minimum grade of 5 at the lab activity, practical

test and written examination.

Date Signature of course coordinator Signature of seminar coordinator

20.04.2018 Lect. PhD. Molnar Arthur Lect. PhD. Molnar Arthur

Date of approval Signature of the head of department

 Prof. PhD. Anca Andreica

https://docs.python.org/3/tutorial/index.html

