
1

SYLLABUS

1. Information regarding the programme

1.1 Higher education institution Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme / Qualification Computer Science (in english)

2. Information regarding the discipline

2.1 Name of the discipline Computer Systems Architecture

2.2 Course coordinator Lect. Dr. Vancea Alexandru-Ioan

2.3 Seminar coordinator Lect. Dr. Vancea Alexandru-Ioan

2.4. Year

of study
1 2.5

Semester
1 2.6. Type of

evaluation
E 2.7 Type of

discipline
Compulsory

3. Total estimated time ((hours/semester of didactic activities)

3.1 Hours per

week

5 Of which: 3.2

course

2 3.3

seminar/laboratory

1 sem + 2 lab

3.4 Total hours in

the curriculum

70 Of which: 3.5

course

28 3.6

seminar/laboratory

42

Time allotment: hours

Learning using manual, course support,

bibliography, course notes

20

Additional documentation (in libraries, on

electronic platforms, field documentation)

10

Preparation for seminars/labs, homework, papers,

portfolios and essays

20

Tutorship 10

Evaluations 20

Other activities:

3.7 Total individual study hours 80

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum

4.2. competencies

5. Conditions (if necessary)

5.1. for the course projector

5.2. for the seminar /lab

2

6. Specific competencies acquired

6.1 Professional

competencies

C6.1 Identification of basic concepts and models for computer systems

and computer networks.

C6.2 Identification and description of the basic architectures for the

organization and management of systems and networks.

6.2 Transversal

competencies

CT1 Application of organized and efficient work rules, of responsible

attitudes towards the didactic and scientific domain, for the creative

exploitation of their own potential according to the principles and rules

of professional ethics

CT3 Use of effective methods and techniques of learning, information,

research and development of the capacity to exploit knowledge, to adapt

to the requirements of a dynamic society and communication in

Romanian language and in a foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

8. Contents

8.1 Course Teaching

methods

Remarks

1

Data representation: elementary data, binary representation and

placement orders, data organizing and storing

Exposure,

description,

explanation,

examples,

discussion

of case

studies

2

Character coding, signed and unsigned representation,

complementary code, conversions, the concept of mathematical

overflow.

3

Computing systems architecture: organization of a CS, the central

processing unit, the system clock, computer on n bits, the storage,

peripheral devices.

4

CS performances, the 80x86 microprocessor’s architecture – general

view of its structure. The address computation mechanism,

addressing modes, far addresses and near addresses.

5 The Executive Unit (EU) of the 80x86 microprocessor: role and

7.1 General

objective of

the

discipline

Knowledge of the computer architecture models, processor

functioning, computer information representation usage

7.2 Specific

objective of

the

discipline

Understanding by the students of the computer architecture models, processor

functioning, computer information representation usage

comprehension of the microprocessor architecture and functioning

 components

and its native low-level workflow. Awareness of the architectural impact on

designing and implementing high level programming languages.

Understanding the impact of the 80x86 processor architecture on Windows

functioning and limitations. Awareness of the triade computer architecture –

operating systems – programming languages and their interactions as the basic

core of Computer Science.

3

functions of the general EU registers and the flags. Classifications

(Registers and Flags) and case studies.

6

The Bus Interface Unit (BIU) of the 80x86 microprocessor: the

address registers, segment registers, machine instructions

representation. The offset specification formula on 32 bits vs. on 16

bits.

7

Assembly language elements: the source line format,

expressions, accessing the operands, operators. Temporary non-

distructive conversions (and specific operators).

8
Directives for defining segments, data definition directives, directives

EQU and INCLUDE, macros.

9

Assembly language instructions: transfer instructions,

signed and unsigned distructive conversions, signed and unsigned

arithmetic operations, bitwise shifting and rotating, logical bitwise

operations.

10

Conditional and unconditional jump instructions,

looping instructions, string instructions. Overflow analysis: how the

80x86 architecture reacts to it.

11

Subprograms call implementation and multimodule

programming: CDECL and STDCALL calling conventions, call

code, entry code, exit code, the import-export directives EXTRN and

GLOBAL.

12

Linking NASM modules with modules written in high-level

programming languages (case study – C programming language).

Recursive call extensive example discussion.

13

Windows static and dynamic libraries: LIB vs. DLL. NASM output

object file formats and their library support. Win32 system libraries:

file management examples, process management, memory

management. Implementing user libraries.

14

Real address mode vs.protected mode code execution environment.

The interaction between user programs and the OS kernel. The

virtual memory concept. Overview of the segmentation and paging

process. Protection setup sample code: real-mode to protected-mode

transition and 32-bit segments.

Bibliography

1. Al. Vancea, F. Boian, D. Bufnea, A. Andreica, A. Darabant, A. Navroschi – Arhitectura

calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2014.

2. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau – Arhitectura calculatoarelor.

Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.

3. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea – Programarea în limbaj de

asamblare 80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.

4. Randal Hyde – The Art of Assembly Programming, No Starch Press, 2003.

(http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/index.html)

5. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de Matematica si

Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de Formare

Continua si Invatamânt la Distanta, Cluj, 2002

6. Irvine, K.R., 2015. Assembly language for x86 processors.

4

7. Kusswurm, D., 2014. Modern X86 Assembly Language Programming. Springer.

8. Carter, P.A., 2004. PC Assembly Language. Github: (http://pacman128.github.io/static/pcasm-

book.pdf)

9. Cavanagh, J., 2013. X86 Assembly Language and C Fundamentals. CRC Press.

10. Guide, P., 2011. Intel® 64 and ia-32 architectures software developer’s manual. Volume 3B:

System programming Guide, Part, 2, p.11.

(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf)

11. BitDefender internal documentations – posted slides.

8.2 Seminar/Laboratory Teaching methods Remarks

Seminars:

S1: Introduction to the IA-32 assembly language.

Converting numbers between number bases 2, 10,

16. Representation of integer numbers in the

computer’s memory. Signed and unsigned

instructions.

S2: Signed and unsigned instructions.

Arithmetic instructions (multiplications and

divisions). Signed and unsigned conversions.

S3: Little-endian representation of numbers in the

memory. Conditional and unconditional jumps.

String operations.

S4: String instructions. Complex string problems.

S5: Library functions call (printf, scanf, fread,

fscanf, fprintf, fclose).

S6: Multi-module programming using the assembly

language.

S7: Topics review and exam preparation by case

studies.

Laboratories

L1: Converting between different nummeration

bases. Bit. Sign bit. Complementary code.

Representing signed integers. Tools for

laboratories. Assembly language program structure.

L2: Simple arithmetic expressions based on

additions, substractions, multiplications and

divisions.

L3: Complex arithmetic expressions (little-endian,

signed and unsigned conversions, declaring

variables / constants).

Exposure, description,

explanation, examples,

discussion

of case studies

Practical projects

5

L4: Bitwise instructions (Bitwise logical

operations, Shift and rotate operations).

L5: Simple String operations (Instructions for

comparisons, conditional jumps and repetitive

loops).

L6: Complex String operations (Specific assembly

language instructions for working on strings of

bytes/words/doublewords/quadwords).

L7: Function calls: Function libraries, Using

external functions. Call conventions, Calling a

system function. Standard msvcrt functions.

L8: Moodle midterm test

L9: Text file operations (open, write, read, close).

L10: Plenary discussions, analysis and evaluation

of up-to-date work. Catch up time with the last

given homeworks. Concluding the assembly

language stand alone part.

L11: Multi-module programming (asm+asm)

L12: Multi-module programming (asm+C)

L13: Topics review and practical exam preparation

by case studies

L14: Practical exam

Bibliography

1. Al. Vancea, F. Boian, D. Bufnea, A. Andreica, A. Darabant, A. Navroschi – Arhitectura

calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2014.

2. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau – Arhitectura calculatoarelor.

Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.

3. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea – Programarea în limbaj de

asamblare 80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.

4. Randal Hyde – The Art of Assembly Programming, No Starch Press, 2003.

(http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/index.html)

5. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de Matematica si

Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de Formare

Continua si Invatamânt la Distanta, Cluj, 2002

6. Irvine, K.R., 2015. Assembly language for x86 processors.

7. Kusswurm, D., 2014. Modern X86 Assembly Language Programming. Springer.

8. Carter, P.A., 2004. PC Assembly Language. Github: (http://pacman128.github.io/static/pcasm-

6

book.pdf)

9. Cavanagh, J., 2013. X86 Assembly Language and C Fundamentals. CRC Press.

10. Guide, P., 2011. Intel® 64 and ia-32 architectures software developer’s manual. Volume 3B:

System programming Guide, Part, 2, p.11.

(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf)

11. BitDefender internal documentations – posted slides.

12. Computer system architecture course homepage – posted support materials and homeworks

for lab preparation.

9. Corroborating the content of the discipline with the expectations of the epistemic

community, professional associations and representative employers within the field of the

program

The course exists in the studying program of all major universities in Romania and abroad;

programming skills

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods
10.3 Share in the

grade (%)

10.4 Course

Testing the basic principles

of the domain and their

interactions

Written exam 55 %

Verifying the understanding of

the assembly language basic

operations and mechanisms

Moodle midterm multiple

choice test
15 %

Application of the 32 bits

assembly language principles

for problem solving;

Average grade received

for the laboratory work
15 %

10.5 Lab/Seminar

activities

Developing and implementing

an assembly language code

solution for a given problem

Practical exam 15 %

10.6 Minimum

performance

standards

At least grade 5 at each of the evaluation methods.

Data completării Titular de curs Titular de seminar

14.04.2020 Lect. Dr. Alexandru VANCEA Lect. Dr. Alexandru VANCEA

Data avizării în departament Director de departament

_______________________ Prof. Dr. Anca ANDREICA

