SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor of Science
1.6 Study programme / Qualification	Computer Science

2. Information regarding the discipline

2.1 Name of the di	scip	oline	M	Mathematical Analysis				
2.2 Course coordin	ato	r	Lect. Adrian Viorel, Ph.D.					
2.3 Seminar coord	inat	or	Lect. Adrian Viorel, Ph.D.					
2.4. Year of study	1	2.5 Semester	1 2.6. Type of evaluation			2.7 Type of discipline	Compulsory	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course supp	ort, bi	bliography, course not	es		30
Additional documentation (in librari	es, on	electronic platforms, t	field o	locumentation)	10
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					
Evaluations					
Other activities					-
3.7 Total individual study hours 94					
3.8 Total hours per semester 150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	High-school calculus
4.2. competencies	Computing limits, derivatives and antiderivatives
	Analytic thinking

5. Conditions (if necessary)

5.1. for the course	Lecture hall equipped with blackboard and beamer
5.2. for the seminar /lab activities	Classroom equipped with blackboard

6. Specific competencies acquired

Professional competencies	 To understand, in-depth, fundamental concepts and results of mathematical analysis. Ability to use mathematical methods for solving practical problems
Transversal competencies	To apply rigorous and efficient work rules, by adopting a responsible attitude towards the scientific and didactic activities. To develop the own creative potential in specific areas, following the professional ethical norms and principles.

7. Objectives of the discipline (outcome of the acquired competencies)

· · · · · · · · · · · · · · · · · · ·				
7.1 General objective of	To acquire elementary knowledge about differential and integral calculus for			
the discipline	real-valued functions of one or several real variables			
7.2 Specific objective of	Students should acquire knowledge about:			
the discipline	 Sequences and series of real numbers, 			
_	Power series;			
	Limits of functions;			
	Partial derivatives and the differential;			
	Extremum points			
	Riemann integrals, improper integrals, multiple integrals			

8. Content

8.1 Course	Teaching methods	Remarks
1. The real numbers: some basic concepts	Direct instruction, mathematical proof, exemplification	
2. Sequences of real numbers	Direct instruction, mathematical proof, exemplification	
3. Series of real numbers; Series with nonnegative terms (I)	Direct instruction, mathematical proof, exemplification	
4. Series with nonnegative terms (II); Alternating series	Direct instruction, mathematical proof, exemplification	
5. Limits, continuity and differentiation of real-valued functions of one real variable	Direct instruction, mathematical proof, exemplification	
6. Higher order derivatives; Taylor series and power series	Direct instruction, mathematical proof, exemplification	
7. The Riemann integral; Improper integrals	Direct instruction, mathematical proof, exemplification	
8. The Euclidean (topological) space R ⁿ ; Sequences of points in R ⁿ	Direct instruction, mathematical proof, exemplification	
Limits and continuity of real-valued functions of several variables	Direct instruction, mathematical proof, exemplification	
10. Partial derivatives and the differential	Direct instruction, mathematical proof, exemplification	

11. Local extremum points for real-valued	Direct instruction, mathematical
functions of several variables	proof, exemplification
12. Double integrals	Direct instruction, mathematical
	proof, exemplification
13. Triple and multiple integrals	Direct instruction, mathematical
	proof, exemplification
14. Change of variables	Direct instruction, mathematical
	proof, exemplification

Bibliography

- 1. R.G. Bartle, D.R. Sherbert, Introduction to Real Analysis, 4^{th} ed., John Wiley & Sons Inc., New York, 2011.
- 2. W.W. Breckner, Analiză matematică. Topologia spațiului Rⁿ, Universitatea din Cluj-Napoca, Cluj-Napoca, 1985.
- 3. Ş. Cobzaş, Analiză matematică Calculul diferențial, Presa Universitară Clujeană, Cluj-Napoca, 1997.
- 4. M. Mureşan, A Concret Approach to Classical Analysis, Springer, New York, 2008.
- 5. M. Oberguggenberger, A. Ostermann, Analysis for Computer Scientists, Foundations, Methods, and Algorithms, Springer, London, 2011.
- 6. W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill Inc., New York, 1976.

		Remarks
8.2 Seminar / laboratory	Teaching methods	
1. Classical inequalities and other properties of	Problem-based instruction,	
real numbers	debate, mathematical proofs	
2. Sequences of real numbers	Problem-based instruction,	
	debate, mathematical proofs	
3. Computing the sum of some series of real	Problem-based instruction,	
numbers	debate, mathematical proofs	
4. Convergence/divergence of some series of	Problem-based instruction,	
real numbers	debate, mathematical proofs	
5. Limits, continuity and differentiation of	Problem-based instruction,	
real-valued functions of one real variable	debate, mathematical proofs	
6. Higher order derivatives; Taylor series and	Problem-based instruction,	
power series	debate, mathematical proofs	
7. Riemann integrals	Problem-based instruction,	
	debate, mathematical proofs	
8. Improper integrals	Problem-based instruction,	
	debate, mathematical proofs	
9. The topology of the space R ⁿ	Problem-based instruction,	
	debate, mathematical proofs	
10. Limits and continuity of real-valued	Problem-based instruction,	
functions of several variables	debate, mathematical proofs	
11. Partial derivatives and the differential	Problem-based instruction,	
	debate, mathematical proofs	
12. Local and global extremum points of real-	Problem-based instruction,	
valued functions	debate, mathematical proofs	
13. Multiple integrals	Problem-based instruction,	
	debate, mathematical proofs	
14. Change of variables	Problem-based instruction,	
	debate, mathematical proofs	

Bibliography

- 1. D.I. Duca, E. Duca, Exerciții și probleme de analiză matematică, vol. I, II, Casa Cărții de Știință, Cluj-Napoca, 2007, 2009.
- 2. W.J. Kaczor, M.T. Nowak, Problems in Mathematical Analysis, vol. I, II, III, American Mathematical Society, 2000, 2001, 2003.
- 3. T. Trif, Probleme de calcul diferențial și integral în Rⁿ, Casa Cărții de Știință, Cluj-Napoca, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	 Knowledge of theoretical concepts and theoretical results; Ability to solve practical exercises and theoretical problems. 	Final written exam	75%		
10.5 Seminar/lab activities	Problem solving	Midterm test	25%		
10.6 Minimum performance standards					
The final grade should be greater than or equal to 5.					

Date	Signature of course coordinator	Signature of seminar coordinator
04.05.2020	Lect. Adrian Viorel, Ph.D.	Lect. Adrian Viorel, Ph.D.
Date of approval		Signature of the head of department
		Prof. Octavian Agratini, Ph.D.