SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Applied Computational Intelligence

2. Information regarding the discipline

				•				
2.1 Name of the	e dis	scipline		Declarative Programming in Machine Learning				
2.2 Course coor	rdin	ator		Prof.Dr. Horia F. Pop				
2.3 Seminar coordinator				Prof.Dr. Horia F. Po	p			
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Compulsory	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1+1
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					42
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					4
Evaluations					8
Other activities:					-

3.7 Total individual study hours	144
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Algorithmics, data structures, statistics
4.2. competencies	Ability to write computer programs in a high level programming language

5. Conditions (if necessary)

5.1. for the course	•	Students will attend the course with their mobile phones shut down
5.2. for the seminar /lab	•	Students will attend the seminar with their mobile phones shut down
activities	•	Room with computers as needed; high level programming language
		environment

6. Specific competencies acquired

es e	 understand, model and represent a CSP problem;
ong	 understand and implement various CSP models;
essi	 model various AI and SC methods as CSP problems and approach accordingly
Professional competencies	 understand and be acquainted with constraints satisfaction frameworks
P ₁	approach various research topics using constraints satisfaction models
	The ability to apply computational methods in solving real world problems.
ersal	Responsible execution of lab assignments, research and practical reports.
ers	Application of efficient and rigorous working rules.
et	 Manifest responsible attitudes toward the scientific and didactic fields.
Transversal competencie	Respecting the professional and ethical principles.
T S	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	To introduce the student in CSP and declarative programming frameworks
discipline	
7.2 Specific objective of the	To present the field of CSP as a novel research and application domain.
discipline	To induce the necessity of CSP methods and techniques by studying some
	relevant practical applications
	To offer the student the instruments that will allow him/her to develop
	different CSP based applications.

8. Content

o. Content		
8.1 Course	Teaching methods	Remarks
Week 1: Administration and Organization	Interactive exposure	
Week 2: Logic Programming in Problem Solving;	Explanation	
Fundamental issues of Graph theory	• Conversation	
Week 3: Introduction and Overview	Didactical demonstration	
Week 4-6: Fundamentals of CSP		
Week 7-8: Intelligent Techniques in CSP		
Week 9-10: Soft Computing Techniques in CSP		
Week 11-12: Overview of CSP Frameworks		
Week 13-14: Delivery of CSP Projects		

Bibliography

- [1] Edward P.K. Tsang, Foundations of Constraint Satisfaction, Academic Press, London and San Diego, 1993, ISBN 0-12-701610-4
- [2] Roman Bartak, On-line Guide to Constraint Programming,

http://ktiml.mff.cuni.cz/~bartak/constraints/index.html

- [3] Grzegorz Kondrak, A Theoretical Evaluation of Selected Backtracking Algorithms, M.Sc. Thesis, University of Alberta, Edmonton, 1994
- [4] ShapeLogic, http://www.shapelogic.org

8.2 Seminar / laboratory	Teaching methods	Remarks
Lab 1: Survey of available information sources.	Interactive exposure	
Choose paper topics and schedule presentations.	• Explanation	
Lab 2-3: Work on CSP techniques	Conversation	
Lab 4-5: Work on CSP research		
Lab 6-7: Delivery of CSP projects		

Bibliography

- [1] Edward P.K. Tsang, Foundations of Constraint Satisfaction, Academic Press, London and San Diego, 1993, ISBN 0-12-701610-4
- [2] Roman Bartak, On-line Guide to Constraint Programming,

http://ktiml.mff.cuni.cz/~bartak/constraints/index.html

- [3] Grzegorz Kondrak, A Theoretical Evaluation of Selected Backtracking Algorithms, M.Sc. Thesis, University of Alberta, Edmonton, 1994
- [4] ShapeLogic, http://www.shapelogic.org

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other Romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the field of the discipline.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Correctness and completeness of accumulated knowledge.	Written exam (in the regular session)	20%

10.5 Seminar/lab	One lab project should be	Evaluation of the project	40%
activities	prepared and presented	(implementation, documen-	
		tation and demonstration)	
	One research projects should be	Evaluation of the report	40%
	prepared and presented	(written report and oral	
		presentation)	

10.6 Minimum performance standards

Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the domain, that (s)he is capable of stating this knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems. Penalty points are awarded for delays in submission of proposed topic choices and final reports. Successful passing of the exam is conditioned by the final grade that has to be at least 5; the written exam grade has to be at least 5; the semester projects overall grade has to be at least 5. No reports may be submitted after the end of the 14-th school week.

Date 27.04.2022 Date of approval

Signature of course coordinator Prof. dr. Horia F. Pop

Signature of seminar coordinator Prof. dr. Horia F. Pop Signature of the head of department Prof. dr. Laura Diosan