SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	High Performance Computing and Big Data Analytics
Qualification	

2. Information regarding the discipline

2.1 Name of the discip	line (en)	Formal modelling of concurrent processes / Modelarea formation			larea formala	
(ro)		a proceselor concurente				
2.2 Course coordinator		Lect. Phd. Adrian Sterca				
2.3 Seminar coordinator			Lect. Phd. Adrian Sterca			
2.4. Year of study 1	2.5 Semester	E 2.7 Type of E Com			Compulsory	
			evaluation		discipline	
2.8 Code of the	MME8094					
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 1 pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				20	
Additional documentation (in libraries, on electronic platforms, field documentation)				19	
Preparation for seminars/labs, homework, papers, portfolios and essays				40	
Tutorship				20	
Evaluations				20	
Other activities:				0	
0.5.5. 11. 11. 1 . 1. 1		110			

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Distributed operating systems, Concurrent and distributed
	programming
4.2. competencies	Concurrent and distributed programming

5. Conditions (if necessary)

5.1. for the course	Class room with a video projector device
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

o. Specif	ic competencies acquired
Professional competencies	Mathematical tools for modelling concurrent systems
Transversal competencies	The ability to mathematically model local or distributed transactional systems The ability to mathematically model and analyse concurrent process systems

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The course offers a strong theoretical approach in modelling concurrent and distributed systems
7.2 Specific objective of the discipline	The course presents several formalisms for describing concurrent processes

8. Content

8.1 Course	Teaching methods	Remarks
1. Serialization, concurrency and parallelism	Exposure:description,	
	explanation, examples,	
	discussion of case	
	studies	
2. Concurrent programming paradigms: shared	Exposure:description,	
memory, message passing, transactional	explanation, examples,	
memory	discussion of case	
	studies	
3. Concurrency models for transactional systems.	Exposure:description,	
The Page Model. The Object model	explanation, examples,	
	discussion of case	
	studies	
4. Concurrency control – serializability criteria	Exposure:description,	
(Page Model)	explanation, examples,	
	discussion of case	

	studies
5. Concurrency control – serializability criteria	Exposure:description,
(Page Model)	explanation, examples,
	discussion of case studies
6 Congruency control algorithms (Page Model)	
6. Concurrency control algorithms (Page Model)	Exposure:description, explanation, examples,
	discussion of case
	studies
7. Multiversioning data	Exposure:description,
7. Water versioning data	explanation, examples,
	discussion of case
	studies
8. Concurrency control – serializability criteria	Exposure:description,
and algorithms (Object Model)	explanation, examples,
, , , , , , , , , , , , , , , , , , ,	discussion of case
	studies
9. Failure recovery	Exposure:description,
	explanation, examples,
	discussion of case
	studies
10. Concurrency control in distributed context	Exposure:description,
	explanation,examples,
	discussion of case
11.7	studies
11. Process algebra I	Exposure:description,
	explanation,examples,
	discussion of case
12 Duo coss alashus II	studies
12. Process algebra II	Exposure:description,
	explanation,examples, discussion of case
	studies
13. CCS – Calculus of Communicating Systems	Exposure:description,
13. CCb Calculus of Communicating bystems	explanation, examples,
	discussion of case
	studies
14. Pi-Calculus	Exposure:description,
	explanation, examples,
	discussion of case
	studies
Ribliography	

Bibliography

- 1. Weikum G. Vossen G. Transactional Information System: Theory, Algorithms, and Practice of Concurrency Control and Recovery. Kaufmann Morgan Publ. 2002.
- 2. Reichel H. Formal Models of Concurrency, 2003
- 3. Robin Milner, Communication and Concurrency, Prentice Hall, International Series in Computer Science, ISBN 0-13-115007-3. 1989
- 4. Bertran Meyer, Concepts of concurrent computations, course, 2015
- 5. Robert Milner, A Calculus of Communicating Systems, Springer, 1986
- 6. Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen, Jiri Srba, Reactive Systems: Modelling, Specification and Verification, 2005.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Discussions related to the project or report's subject	Dialog, debate, case	
	studies, examples	
2. Discussions related to the project or report's subject	Dialog, debate, case	
	studies, examples	
3. Discussions related to the project or report's subject	Dialog, debate, case	
	studies, examples	
4. Report presentations	Dialog, debate, case	
	studies, examples	
5. Report presentations	Dialog, debate, case	
	studies, examples	
6. Project presentations	Dialog, debate, case	
	studies, examples	
7. Project presentations	Dialog, debate, case	
	studies, examples	
Bibliography		

Recent articles from ACM Digital Library and IEEE Xplore

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course's contents is in the curiculla of major universities from abroad for master programs

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowing the formalisms for describing concurrency presented during the course	Examination	30%
10.5 Seminar/lab activities	Ability to understand recent research and relate it to theoretical concepts presented at the course	Project Research report	40% 30%

10.6 Minimum performance standards

➤ In order to successfully pass this course, students must get at least 5 at each of the 3 examination tasks.

Date		Signature of course coordinator	Signature of seminar coordinator
		Lect.PhD. Adrian Sterca	Lect.PhD. Adrian Sterca
Date of app	roval	Signature of the head of department	
		Prof. PhD. Anca Andreica	