SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Departament of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	High performance computing
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Ma	Machine Learning				
2.2 Course coor	din	ator		Prof. PhD Czibula G	abrie	la		
2.3 Seminar coordinator				Prof. PhD Czibula Gabriela				
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	Comulsory	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	sem+
					1 pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					6
Evaluations					10
Other activities:					
		0.4			-

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Artificial Intelligence
4.2. competencies	Programming skills

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environement a.s.o.)

6. Specific competencies acquired

Professional competencies	 Advanced ability to approach, model and solve phenomena and problems from nature and economy using fundamental knowledge from mathematics and computer science. Ability to approach and solve complex problems using various techniques of computational intelligence.
Transversal competencies	 Ethic and fair behavior, commitment to professional deontology Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negotiation abilities. Entrepreneurial skills; working with economical knowledge; continuous learning Good English communication skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To provide an introduction to the basic principles, techniques, and applications of Machine Learning.
7.2 Specific objective of the discipline	 To cover the principles, design, implementation and validation of learning programs which improve their performance on some set of tasks by experience. To offer a broad understanding of machine learning algorithms and their use in data-driven knowledge discovery and program synthesis. To offer an understanding of the current state of the art in machine learning in order to conduct original research in machine learning.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in Machine Learning.	Interactive exposure	
 Issues in Machine Learning 	• Explanation	
 Designing a learning system 	• Conversation	
• Example	Didactical	
	demonstration	
2. Statistical foundations	• Interactive exposure	
 Event space and Probability function 	Explanation	
Elementary Information Theory	 Conversation 	
• Examples	Didactical	
	demonstration	
3. Decision Tree learning	• Interactive exposure	
 Decision tree representation 	Explanation	
 ID3 learning algorithm 	 Conversation 	
 Statistical measures in decision tree 	Didactical	
learning: entropy, information gain	demonstration	
 Issues in DT learning 		
 Applications 		

 4. Artificial Neural Networks Neural Network representations Appropriate problems for Neural Network Learning Perceptrons Multilayer Networks and the Backpropagation algorithm Advanced topics in Artificial Neural Networks 	 Interactive exposure Explanation Conversation Didactical demonstration
 5. Support Vector machines Main idea Linear SVMs Non-linear SVMs Applications 	 Interactive exposure Explanation Conversation Didactical demonstration
 6. Bayesian learning Specific problems Bayes theorem Naive Bayes Classifier 	 Interactive exposure Explanation Conversation Didactical demonstration
 7. Instance based learning k-Nearest Neighbor learning Locally weighted regression Radial basis functions Case based reasoning Applications 	 Interactive exposure Explanation Conversation Didactical demonstration
 8. Unsupervised Learning Cluster analysis Self organizing maps Hebbian learning Applications 	 Interactive exposure Explanation Conversation Didactical demonstration
 9. Reinforcement Learning The reinforcement learning task Markov Decision Processes Q-learning Temporal Difference learning Applications 	 Interactive exposure Explanation Conversation Didactical demonstration
ML research reports presentation	Interactive exposureConversation

Bibliography

- 1. Mitchell, T., Machine Learning, McGraw Hill, 1997
- 2. Russell, J.S, Norvig, P., Artificial Intelligence- A Modern Approach, Prentice- Hall, Inc., New Jersey, 1995
- 3. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998
- 4. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008
- 5. Manning, C., Schutze, H., Foundations of Statistical NLP, MIT Press, 2002
- 6. Cristiani, N., Support Vector and Kernel Machines, BIOwulf Technologies, 2001
- 7. Nillson, N., Introduction to Machine Learning, Stanford University, 1996

8.2 Seminar / laboratory	Teaching methods	Remarks
		The lab is structured as
		2 hours classes every
		second week

Administration of labs. Survey of the sources of information available on Internet and Intranet Survey of the sources of information available on Internet and Intranet; chosing the paper topic and scheduling the presentation.	 Interactive exposure Explanation Conversation Documentation Explanation Conversation
The first software project (Project 1) will be developed using an open source ML software. The second project (Project 2) will be fully implemented, without using existing ML environments.	
3. Installation of ML software; description of the programming software used, including used features	Lab assignmentExplanationConversation
4. Problem definition	Lab assignmentExplanationConversation
5. Project 1 demonstration and comments about the solution; problem definition for Project 2	Lab assignmentExplanationConversation
6. Comments about the solution and problem analysis for Project 2	Lab assignmentExplanationConversation
7. Design documentation; the electronic version of the source code, test files and any other files required to test Project 2. Project 2 demonstration	Lab assignmentExplanationConversation

Bibliography

- 1. Mitchell, T., Machine Learning, McGraw Hill, 1997
- 2. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998
- 3. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the machine learning field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	A theoretical research report on a learning technique, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	30%
	The correctness and completeness of the accumulated	Written exam (in the regular session)	30%

	knowledge.		
10.5 Seminar/lab activities	• A software project	Evaluation of the project	15%
	developed using an	(documentation and	
	open source ML	demonstration)	
	software		
	A software project	Evaluation of the project	25%
	fully implemented,	(software implementation,	
	without using existing	documentation and	
	ML environments.	demonstration)	

10.6 Minimum performance standards

- Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the Machine Learning domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date Signature of course coordinator Signature of seminar coordinator

14.04.2022 Prof. dr. Gabriela Czibula Prof. dr. Gabriela Czibula

Date of approval Signature of the head of department

Prof. dr. Dioșan Laura