SYLLABUS

i inormation regarang the programme				
1.1 Higher education	Babeş Bolyai University			
institution	5 0 0			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Data Science for Industry and Society			
Qualification	Data Science for industry and Society			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		Intelligent modelling					
(ro)							
2.2 Course coordinator		Pr	Prof. PhD. Dioșan Laura				
2.3 Seminar coordinator		Prof. PhD. Dioșan Laura					
2.4. Year of study 1 2.5 Semester		2	2.6. Type of	Е	2.7 Type of	Compulsory	
			evaluation		discipline		
2.8 Code of the MME8185							
discipline							

3. Total estimated time (hours/semester of didactic activities)

2 1 Hours non work	4	Of which: 3.2 course	2	3.3	1sem+1
3.1 Hours per week	4	Of which: 5.2 course			
				seminar/laboratory	project
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					46
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					4
Evaluations					4
Other activities:					-
3.7 Total individual study hours 144					
3.8 Total hours per semester 200					
3.9 Number of ECTS credits 8					

4. Prerequisites (if necessary)

4.1. curriculum	Algorithms, data structures, statistics
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	• Projector
5.2. for the seminar /lab	Computers, specific development environment
activities	

6. Specific competencies acquired

Professional competencies		CE1.3 Use of Artificial Intelligence's methods, techniques and algorithms for modelling problem solutionsCE1.4. Identify and explain Artificial Intelligence's techniques and algorithms and solving specific problems
P	CO	CE1.5. Integration of Artificial Intelligence models and solutions in specific applications
Transversal competencies	,	 CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT2. Efficient conduct of activities organized in an interdisciplinary group and development of empathic capacity of interpersonal communication, networking and collaboration with diverse groups
Transvers		CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Emphasis the proper intelligent methods and techniques (optimisation algorithms, game theory, machine learning) for solving current problems for			
	industry and society (healthcare, biology, psychology, finance, etc.)			
7.2 Specific objective of the	This course is aimed to advance both theoretical and practical aspects of			
discipline	Artificial Intelligence. To the end, the students will be able to:			
	• Identify the society's challenges that can be solved by intelligent methods and to propose AI-based solutions			
	 Describe the AI methods (basic concepts, design and implementation) 			
	• Model the social challenges as mathematical problems that can be solved by intelligent algorithms and to adapt them to particular problems			
	 Describe the evaluation criteria of AI methods Prepare presentations of the implemented projects 			

. Content .1 Course	Teaching methods	Remarks
 Introduction to Artificial Intelligence Problem solving by AI-based mthods Optimisation AI-based methods Problem formalisation Methods Classical optimisation methods Classical optimisation methods Heuristics and meta-heuristic optimisation methods Class problems Combinatorial optimisation versus continuous optimisation Constraint-based optimisation Constraint-based optimisation Multi-objective and multimodal optimisation Optimisation problems Planning problems (resource allocation, routing, scheduling, etc.) Examples Environment conservation Vehicle routing problem Nurse rostering Timetabling Maximisation of 	 Interactive exposure Presentation Explanation Practical examples Case-study discussions 	
influences in social networks Machine learning methods Problem formalisation Regression problems Supervised classification problems Unsupervised classification problems Evaluation criteria Prediction error, prediction accuracy, precision, recall, etc.		
 Machine Learning methods K-nearest neighbour 		

- Decision trees
- Neural networks and deep learning
- Examples
 - Prediction of illegal activities
 - Urban computing (transportation networks, improvement of mobility and safety, etc.)
 - Health (diagnosis and decision systems, control systems, monitoring, etc.)
- Applying machine learning for information processing that were collected in different domains (medical, biological, financial, psychology, etc) and represented in different modalities:
 - o Texts
 - o Images
 - \circ Sounds
 - o Networks / graphs

Bibliography

- 1. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 2. T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- 3. D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- 4. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- 5. P. F. Brown, S. Della Pietra, V. J. Della Pietra, and R. L. Mercer. The mathematic of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2):263-311, 1994
- 6. Ilachinski, Andrew, 2001, Cellular Automata, Singapore: World Scientific Publishing.
- 7. Miller, John H. and Scott E. Page, 2007, Complex Adaptive System, Princeton, NJ: Princeton University Press.
- 8. Bradley, Stephen, Arnoldo Hax, and Thomas Magnanti. "Applied mathematical programming." (1977) link
- 9. Nisan, Noam, et al., eds. Algorithmic game theory. Vol. 1. Cambridge: Cambridge University Press, 2007. link
- 10. Christopher, M. Bishop. PATTERN RECOGNITION AND MACHINE LEARNING. Springer-Verlag New York, 2016.
- 11. Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998. link
 - Papadimitriou, Christos H., and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity. Courier Corporation, 1998.

8.2 Seminar / laboratory	Teaching methods	Remarks
Project development	 Interactive exposure 	
- Application oriented	• Explanation	
• E.g. Intelligent methods for	Conversation	
customer segmentation in	Didactical demonstration	
marketing strategies		
- AI oriented		
 E.g. Deep Neural Networks for 		

reducing airpolution	
 Problem description Identify the available data 	
3. Define the evaluation criteria	
4. Identify the proper intelligent tools able to solve the problem	
5. Problem solving	
6. Project presentation	
In all the stages, the classes will be organised in an	
interactive way in order to construct in a	
collaborative manner feasible solutions. Feedback	
will be provided along the entire project	
development from both academic and industry	
specialists.	

Bibliography

- 1. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 2. T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- 3. D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- 4. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- 5. P. F. Brown, S. Della Pietra, V. J. Della Pietra, and R. L. Mercer. The mathematic of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2):263-311, 1994
- 6. Ilachinski, Andrew, 2001, Cellular Automata, Singapore: World Scientific Publishing.
- 7. Miller, John H. and Scott E. Page, 2007, Complex Adaptive System, Princeton, NJ: Princeton University Press.
- 8. Bradley, Stephen, Arnoldo Hax, and Thomas Magnanti. "Applied mathematical programming." (1977) link
- 9. Nisan, Noam, et al., eds. Algorithmic game theory. Vol. 1. Cambridge: Cambridge University Press, 2007. link
- 10. Christopher, M. Bishop. PATTERN RECOGNITION AND MACHINE LEARNING. Springer-Verlag New York, 2016.
- Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998. link Papadimitriou, Christos H., and Kenneth Steiglitz. Combinatorial optimization: algorithms and

Papadimitriou, Christos H., and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity. Courier Corporation, 1998.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the curriculum of many universities in the world.
- The results of course are considered by software companies particularly useful and topical, developing needed abilities in modelling and visualization of data.

10. Evaluation

Type of activity 10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
---	-------------------------	-------------------

			grade (%)			
10.4 Course	Know concepts and	Research report and	50%			
	methods from the domain	presentation				
	of artificial intelligence					
10.5 Seminar/lab activities	Apply AI techniques in	Project implementation and	50%			
	real problems	presentation				
10.6 Minimum performance standards						
Each student should implement 70% of the project.						

Date

Signature of course coordinator

Signature of seminar coordinator

23 April 2022

Prof. PhD. Dioșan Laura

Prof. PhD. Dioșan Laura

Date of approval

Signature of the head of department

.....

Prof. PhD. Dioșan Laura