SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Data Science for Industry and Society
Qualification	

2. Information regarding the discipline

2.1 Name of the	di	scipline	Ba	sics of Statistics			
2.2 Course coor	din	ator		Assoc. Prof. PhD. Habil. Sanda Micula			
2.3 Seminar coordinator Assoc. Prof. PhD. Habil. Sanda Micula							
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8 Course Cod	e	MME818	30				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	+ 1 pr.
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				32	
Additional documentation (in libraries, on electronic platforms, field documentation)				8	
Preparation for seminars/labs, homework, papers, portfolios and essays				26	
Tutorship			10		
Evaluations				18	
Other activities:				-	

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Basic notions of Algebra	
	Basic notions of Mathematical Analysis	
4.2. competencies	Logical thinking	
	Basic logical programming skills	

5. Conditions (if necessary)

5.1. for the course	Lecture room with large blackboard and video projector, laptop, beamer
5.2. for the seminar /lab	 Laboratory with computers having Office and Matlab installed

6. Specific competencies acquired

o. Specific	c competencies acquired
Professional competencies	C4.1 Defining basic concepts, theory and mathematical models C4.2 Interpretation of mathematical models C4.3 Identifying the appropriate models and methods for solving real-life problems C4.5 Embedding formal models in applications from various areas
Transversal competencies	CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible approach towards the academic and scientific fields, in order to make the most of one's own creative potential, while obeying the rules and principles of professional ethic CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Understand the broad directions of Descriptive and Inferential Statistics in order to perform analysis of data Acquire the ability to use statistical analysis features of various software
7.2 Specific objective of the discipline	 Acquire the ability to collect, organize and display data in order to perform statistical analysis Become familiar and be able to work with various statistical models and algorithms Acquire the ability to use statistical software and interpret the results

8. Content

Content				
8.1 Course	Teaching methods	Remarks		
1. Introduction. Populations and samples, terminology. Declaring the objectives. Data collection. Statistical data mining techniques. Graphical display of data, pie charts, bar graphs.	Interactive exposureExplanationConversationDescription			
2. Exploring and visualizing data. Frequency and grouped frequency tables. Histograms, frequency polygons, stem-and-leaf plots.	Interactive exposureExplanationConversationDescription			
3. Descriptive Statistics. Parameters of a statistical distribution. Measures of central tendency. Measures of variability. Variance and standard deviation, interpretation.	Interactive exposureExplanationConversationDescription			

Coefficient of variation. Standard errors of estimates. Examples and applications.	
4. Percentiles, deciles, quartiles, interquartile range. Outliers, detection of outliers, the 3σ rule. Boxplots. Interpretation of data.	 Interactive exposure Explanation Conversation Description
5. Inferential Statistics. Notions of estimation theory. The Normal and Standard Normal distribution, Z-quantiles. The Student T-distribution and T- quantiles. Point estimators, basic properties.	 Interactive exposure Explanation Conversation Didactical demonstration
6. One-sided and two-sided confidence intervals. Estimating the mean and the proportion by confidence intervals. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
7. Selecting the sample size. Two-sample statistics, pooled proportion. Estimating the difference of proportions. Confidence intervals for paired data.	 Interactive exposure Explanation Conversation Description
8. Pooled variance of two samples. Estimating the difference of means by confidence intervals. Examples.	 Interactive exposure Explanation Conversation Description
9. Hypothesis testing. Basic concepts, general framework. Rejection region. Type I and type II errors. Significance testing and P-values.	 Interactive exposure Explanation Conversation Didactical demonstration
10. Z-tests for the mean. Selecting the sample size. Examples. T (Student)-tests for the mean. Tests for proportions.	Interactive exposureExplanationConversation
11. The Fisher F-distribution and F-quantiles. F-tests for the ratio of variances. Tests for the difference of means. Paired data tests. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
12. Correlation and Regression. Two-sample statistics. Covariance and correlation coefficient. Scatter plots and time plots. Conditional mean. Curves of regression. Examples.	 Interactive exposure Explanation Conversation
13. Method of least squares. Linear regression. Overfitting a model. Polynomial regression. Examples and applications.	 Interactive exposure Explanation Conversation Description
14. Fitting models. Univariate analysis of variance (ANOVA) and R-square. Prediction. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Miller, J.D., Statistics for Data Science, Packt Publishing, Birmingham, UK, 2017.
- 3. Bruce P., Bruce A., Practical Statistics for Data Scientists, 50 Essential Concepts, O'Reilly Media, CA, USA, 2017.
- 4. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, USA, 2014.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

6. Gentle, J. E., Elements of Computational Statistics, Springer-Verlag, New York, 2002.

8.2 Seminar /Laboratory	Teaching methods	Remarks
Introduction to Matlab (Octave) and Excel.	Interactive exposureExplanationConversation	The seminar is structured as 2 hours per week, every other week
2. Descriptive Statistics. Grouped frequency table. Computation of statistical measures in Matlab and Excel.	 Interactive exposure Explanation Conversation Individual and group work 	
3. Graphical display of data. Histogram, frequency polygon, boxplot in Matlab and Excel.	 Interactive exposure Conversation Synthesis Individual and group work 	
Confidence intervals. Interpretation of results.	 Interactive exposure Explanation Conversation Individual and group work 	
5. Hypothesis testing in Matlab and Excel. Interpretation of results.	 Interactive exposure Explanation Conversation Individual and group work 	
6. Correlation and regression.	 Interactive exposure Explanation Conversation Individual and group work 	
7. Presentation. A project of statistical analysis of data.	ConversationIndividual and group work	

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Miller, J.D., Statistics for Data Science, Packt Publishing, Birmingham, UK, 2017.
- 3. Bruce P., Bruce A., Practical Statistics for Data Scientists, 50 Essential Concepts, O'Reilly Media, CA, USA, 2017.
- 4. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, 2014.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for studying Computer Science;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles in Statistics, with emphasis on real life applications; be able to apply correctly the course concepts on various problems be able to use statistical exploratory data analysis tools 	Written exam on problems and applications	60%
10.5 Seminar/Lab activities	 be able to apply course concepts and techniques on practical problems be able to solve numerical statistical problems in Excel and Matlab be able to perform statistical analysis of data 	- participation in discussing, solving and implementing problems throughout the semester - individual presentation of solutions - presentation of a project of statistical analysis of data	40%

10.7 Minimum performance standards

A grade of 5 or above (on a scale from 1 to 10) on **each** activity mentioned above (written test, seminar/lab evaluation)

Date	Signature of course coordinator	Signature of seminar coordinator
14.04.2022	Assoc. Prof. PhD. Habil. Sanda Micula	Assoc. Prof. PhD. Habil. Sanda Micula

Date of approval	Signature of the head of department