SYLLABUS

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Mathematics and Informatics
1.3 Department	Informatics
1.4 Field of study	Informatics
1.5 Study cycle	Master
1.6 Study programme /	Database Systems
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

	-				
2.1 Name of the discipline (en)		Algorithms, models and concepts in distributed systems			
(ro)		Algoritmi, modele și concepte in sisteme distribuite			
2.2 Course coordinator		Assoc. prof. Rares Boian			
2.3 Seminar coordinator		Assoc. prof. Rareș Boian			
2.4. Year of study 2 2.5 Semest	er 4	2.6. Type of	Ε	2.7 Type of	Optional
		evaluation		discipline	_
2.8 Code of theMME8110					
discipline					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bib	liography, course note	es		39
Additional documentation (in libraries, on electronic platforms, field documentation)				29	
Preparation for seminars/labs, homework, papers, portfolios and essays				39	
Tutorship				25	
Evaluations				26	
Other activities:					
3.7 Total individual study hours 158					
3.8 Total hours per semester		200			
3.9 Number of ECTS credits		8			

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	 The requirements are posted here http://www.cs.ubbcluj.ro/~rares/course/amcsd/
5.2. for the seminar /lab activities	 The requirements are posted here http://www.cs.ubbcluj.ro/~rares/course/amcsd/

6. Specific competencies acquired

•	• Define notions, concepts, theories and models of distributed systems.
	· Define notions, concepts, meories and models of distributed systems.
Professional competencies	\cdot Critical analysis and use of the principles, methods and techniques work for quantitative and qualitative evaluation of the processes within distributed systems
competencies	\cdot Apply basic concepts and theories in the field of distributed systems, programming methods and operating systems project development professional
Transversal competencies	• Execution of the tasks required under specified requirements and the deadlines imposed, with the rules of professional ethics and moral conduct
	\cdot Information and permanent documentation in its field
	\cdot Seeking to improve business results by engaging in professional activities

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Learning basic distributed systems and distributed algorithms
discipline	concepts
	 Learn to implement distributed algorithms
7.2 Specific objective of the	Abstractions used in modelling the distributed algorithms
discipline	 Distributed systems theoretical models
	· Broadcast algorithms
	Shared memory algorithms
	Consensus algorithms

8. Content

8.1 Course	Teaching methods	Remarks
Weeks 1-2: Distributed systems models and	Interactive exposure	
abstractions	Explanation	
	Conversation	
	Didactical demonstration	
Weeks 3-4: Basic and reliable broadcast algorithms	Interactive exposure	
	\cdot Explanation	
	Conversation	
	Didactical demonstration	
Weeks 5-6: Uniform and probabilistic broadcast	Interactive exposure	
algorithms	Explanation	
	Conversation	
	Didactical demonstration	
Weeks 7-8: Shared memory - regular registers	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
Weeks 9-10: Shared memory - atomic registers	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
Weeks 11-12: Consensus - flooding	Interactive exposure	
	• Explanation	

	 Conversation Didactical demonstration
Weeks 13-14: Consensus - hierarchical	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration

Bibliography

1. BARNABY T. Distributed .NET Programming in C#. Apress, 2002

2. BOIAN F.M. Programarea distribuita in internet; metode si aplicatii. Ed. Albastra, Cluj, 1997

3. CHRISTIAN CACHIN, RACHID GUERRAOUI, LUIS RODRIGUES, Introduction to Reliable and Secure Distributed Programming, Second Edition, Springer, 2011

- 4. HUGHES C. HUGHES T. Parallel and Distributed Programming Using C++. Addison Wesley, 2003
- 5. LANG U. SCHREINER R. Developing Secure Distributed Systems with CORBA. Artech House, 2002
- 6. LYNCH N.A. Distributed Algorithms. Morgan Kaufmann Pub. 1996
- 7. TANENBAUM A.S. Distributed Operating Systems. Prentice Hall, 2000
- 8. TEL G. Introduction to Distributed Algorithms. Cambridge Press, 1994

9. WEIKUM G. VOSSEN G. Transactional Information Systems: theory, algorithms, and the practice of concurrency control and recovery. Morgan Kaufmann Pub. 2002

concurrency control and recovery. Morgan Kaumann r			
8.2 Seminar / laboratory	Teaching methods	Remarks	
Distributed algorithm implementation architecture	Interactive exposure		
	Explanation		
	Conversation		
	Didactical demonstration		
Detailed discussion about the implementation and	Interactive exposure		
testing of the broadcast algorithm	Explanation		
	Conversation		
	Didactical demonstration		
Detailed discussion about the implementation and	Interactive exposure		
testing of the shared memory algorithm	Explanation		
	Conversation		
	Didactical demonstration		
Detailed discussion about the implementation and	Interactive exposure		
testing of the consensus algorithm	Explanation		
	Conversation		
	Didactical demonstration		

Bibliography

1. BARNABY T. Distributed .NET Programming in C#. Apress, 2002

 BOIAN F.M. Programarea distribuita in internet; metode si aplicatii. Ed. Albastra, Cluj, 1997
 CHRISTIAN CACHIN, RACHID GUERRAOUI, LUIS RODRIGUES, Introduction to Reliable and Secure Distributed Programming, Second Edition, Springer, 2011

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- By learning the theoretical and methodological concepts and addressing the practical aspects of the Algorithms, models and concepts in distributed systems course, students acquire a body of knowledge consistent, consistent with partial competencies required for possible occupations provided in Grid 1 RNCIS
- The course complies with IEEE and ACM Curriculla Recommendations for Computer Science studies.
- · The course curriculum exists in universities and faculties in Romania

• The course content is very well appreciated by software companies whose employees and graduates of this course

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	The level of knowledge and understanding of the course subjects	Written exam	25%	
10.5 Seminar/lab activities	Ability to solve practical	Broadcast project	25%	
	problems, specific to the	Shared memory project	25%	
	course subjects	Consensus project	25%	
10.6 Minimum performance standards				
Ø Minimum 5 in the	final grade			

Date	Signature of course coordinator	Signature of seminar coordinator
20.04.2018	Assoc.prof. Rareş Boian	Assoc.prof. Rareş Boian

Date of approval

.....

Signature of the head of department Prof.dr. Anca Andreica