SYLLABUS

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Doctoral School in Mathematics and Computer Science		
1.4 Field of study	Mathematics		
1.5 Study cycle	Doctoral studies		
1.6 Study programme	TRAINING PROGRAM BASED ON ADVANCED		
	ACADEMIC STUDIES		

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	cipline	Optimal mass transportation with applications /				
			Teoria transportului optimal cu aplicații				
			Teaching language: English				
2.2 Course coor	din	ator	Kristály Alexandru				
2.3 Seminar coo	ordi	nator		Kristály Alexandru			
2.4. Year of	1	2.5	1	2.6. Type of	Е	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	3	Of which: 3.5 course	24	3.6	12
	6			seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course notes	S		60
Additional documentation (in libraries	, on	electronic platforms, fie	eld do	cumentation)	70
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					
Evaluations					21
Other activities:					
3.7 Total individual study hours 214					
2.0 T + 11 250					
3.8 Total nours per semester		250			
3.9 Number of ECTS credits		10			

4. Prerequisites (if necessary)

4.1. curriculum	Riemannian and Finsler geometry, measure theory	
4.2. competencies	Elliptic PDEs, Heisenberg groups	

5. Conditions (if necessary)

())	
5.1. for the course	Blackboard and videoprojector

5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment; Blackboard

6. Specific competencies acquired

Prof essio nal com pete ncies	 Recognition of the main types of mathematical problems, selection of methods and of appropriate techniques for solving them Explaining and interpreting mathematical models Use of mathematical reasoning in demonstrations
Tran svers al com pete ncies	 Applying the rules of rigorous and efficient work, manifesting responsible attitudes compared to the scientific field for the optimal and creative valorification of own potential in specific situations with respect to the principles and norms of ethics Efficient use of information sources, training and development resources

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Deepening some chapters in the theory of optimal mass transportation and applying these results in the geometry of metric measure spaces
7.2 Specific objective of the discipline	 Deepening the study of geometric inequalities on smooth/nosmooth spaces Applications of the optimal mass transport in the theory of partial differential equations

8. Content

8.1 Course	Teaching methods	Remarks
1. Kantorovich duality	Interactive talk, modelation,	
	proof, exemplification	
2. c-concave functions	Interactive talk, modelation,	
	proof, exemplification	
3. Monge-Ampere equation	Interactive talk, modelation,	
	proof, exemplification	
4. Jacobi fields and Ricci curvature on Riemannian	Interactive talk, modelation,	
manifolds	proof, exemplification	
5. Interpolation and displacement convexity	Interactive talk, modelation,	
	proof, exemplification	
6. Curvature-dimension condition CD(K,N) in the	Interactive talk, modelation,	
sense of Lott-Sturm-Villani	proof, exemplification	
7. Sharp functional inequalities via optimal mass	Interactive talk, modelation,	
transport	proof, exemplification	
8. Geometric inequalities in the CD(K,N) sense	Interactive talk, modelation,	
(Brunn-Minowski, Borell-Brascamp-Lieb,	proof, exemplification	
Prekopa-Leindler)		
9. Equality cases in geometric inequalities	Interactive talk, modelation,	
	proof, exemplification	

10. Jacobian-type inequalities on sub-Riemannian manifolds	Interactive talk, modelation,	
11. Geometric inequalities on sub-Riemannian manifolds (Carnot and Heisenberg groups)	Interactive talk, modelation, proof, exemplification	
12. Open problems in the theory of optimal mass transport		
8.2 Seminar	Teaching methods	Remarks
1. Cyclical monotonicity (Rockafellar theorem), exercises	Proof, conversation, cooperation, individual study	
2. Wasserstein distance	Proof, conversation, cooperation, individual study	
3. Transportation costs, exercises	Proof, conversation, cooperation, individual study	
4. Distortion coefficients in the sense of Lott- Sturm-Villani	Proof, conversation, cooperation, individual study	
5. Concavity of det^1/n	Proof, conversation, cooperation, individual study	
6. Co-area formula and layer cake representation	Proof, conversation, cooperation, individual study	
7. Symmetrisation (Polya-Szego-type inequality)	Proof, conversation, cooperation, individual study	
8. Isoperimetric inequality in R^N via optimal mass transportation	Proof, conversation, cooperation, individual study	
9. Rigidity results	Proof, conversation, cooperation, individual study	
10. Isoperimetric inequalities on curved spaces, examples and counterexamples	Proof, conversation, cooperation, individual study	
11. Geodesics and distortions on the Heisenberg groups	Proof, conversation, cooperation, individual study	
12. Open problems	Proof, conversation, cooperation, individual study	

Bibliography

- C. Villani, Optimal transport. Old and new. Fundamental Principles of Mathematical Sciences, 338. Springer-Verlag, Berlin, 2009.
- 2. C. Villani, Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003.
- 3. Z. Balogh, A. Kristály, Equality in Borell-Brascamp-Lieb inequalities on curved spaces. *Adv. Math.* 339 (2018), 453–494.
- 4. Z. Balogh, A. Kristály, K. Sipos, Geometric inequalities on Heisenberg groups. *Calc. Var. Partial Differential Equations* 57 (2018), no. 2, Art. 61, 41 pp.
- 5. A. Kristály, V. Radulescu, Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics, Cambridge University Press, Cambridge, 2010.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The present discipline emphasizes the use of notions from mathematical analysis, Riemannian and Finsler geometry with applications in two important directions:

1. understanding/mastering some notions/techniques related to the theory of optimal mass transportation and geometric/functional inequalities

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	Evaluation of knowledge	2 tests (the first on the 7^{th}	50%		
	and earned competencies	week, the second on 13 th			
		week)			
10.5 Seminar	Seminar activity	Conversation, individual	20 %		
		work			
	Presentation of a	Conversation and clarity of	30 %		
	research topic	presentation			
10.6 Minimum performance standards					
Minimal/Passing grade: 5.					

Date	Signature of course coordinator	Signature of seminar coordinator
30.06.2021	Prof. dr. Kristály Alexandru	Prof. dr. Kristály Alexandru

Date of approval

Signature of the head of doctoral school

07.07.2021

Prof. dr. Gabriela Czibula 9/3 -

