SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Doctoral School in Mathematics and Computer Science
1.4 Field of study	Mathematics
1.5 Study cycle	Doctoral studies
1.60.1	TRANSPORTATION OF AN ARMANCER
1.6 Study programme /	TRAINING PROGRAM BASED ON ADVANCED
Qualification	ACADEMIC STUDIES

2. Information regarding the discipline

2.1 Name of the discipline Special Topics in Complex Analysis (Capitole speciale de analiza					tole speciale de analiză		
	complexă)						
2.2 Course coor	2.2 Course coordinator Professor PhD Mirela KOHR						
2.3 Seminar coordinator				Professor PhD Mirela KOHR			
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	DS/Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1 sem	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6 seminar	12	
Time allotment:						
Learning using manual, course suppor	t, bił	oliography, course notes	5		40	
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays					40	
Tutorship					50	
Evaluations						
Other activities:					-	
3.7 Total individual study hours		214			-	

3.7 Total individual study hours	214
3.8 Total hours per semester	250
3.9 Number of ECTS credits	10

4. Prerequisites (if necessary)

4.1. curriculum	Complex analysis; Real functions; Partial differential
	equations; Differential and integral calculus in R ⁿ
4.2. competencies	The are useful logical thinking and mathematical notions and
	results from the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

Prof	• Ability to understand and manipulate concepts, individual results and advanced mathematical theories.
essio nal com pete ncies	Ability to use scientific language and to write scientific reports and papers.
Tran svers al com pete ncies	 Ability to inform themselves, to work independently or in a team in order to carry out studies and to solve complex problems. Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics, Applied Mathematics, or in other fields that use concepts in complex analysis. Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Knowledge, understanding and use of main concepts and results of complex analysis. Knowledge, understanding and use of methods of complex analysis in the study of special problems in pure and applied mathematics. Ability to use and apply concepts and fundamental results of advanced mathematics.
	in the study of specific problems of complex analysis.
7.2 Specific objective of the discipline	 Acquiring basic and advanced knowledge in complex analysis. Knowledge, understanding and use of advanced topics in mathematics in the study of special problems in complex analysis. Ability of the PhD student involvement in scientific research.

8. Content

8.1 Course	Teaching methods	Remarks
Part I		
1. Analytic branches. Index (winding number).	Lectures, modeling,	
General properties. The Cauchy integral formulas.	didactical demonstration,	
Applications.	conversation. Presentation	
	of alternative explanations.	
2. Cauchy's theorem related to zeros and poles of	Lectures, modeling,	
meromorphic functions. The argument principle.	didactical demonstration,	
Applications.	conversation. Presentation	
	of alternative explanations.	

2	D 1 /2 - 41 1	T 1-1:	
3.	Rouché's theorem. Open mapping theorem and	Lectures, modeling,	
	Hurwitz's theorem. Applications.	didactical demonstration,	
		conversation. Presentation	
		of alternative explanations.	
4.	The Fréchet space $H(\Omega)$. Families of holomorphic	Lectures, modeling,	
	functions. Montel and Vitali's theorems. Extremal	didactical demonstration,	
	problems on compact subsets of $H(\Omega)$.	conversation. Presentation	
	•	of alternative explanations.	
5.	Conformal mappings. The automorphisms of the	Lectures, modeling,	
	unit disc and the upper half-plane. The	didactical demonstration,	
	automorphisms of the complex plane.	conversation. Presentation	
	automorphisms of the complex plane.	of alternative explanations.	
6.	The Riemann mapping theorem. Extension to the	Lectures, modeling,	
0.			
	boundary.	didactical demonstration,	
		conversation. Presentation	
_		of alternative explanations.	
7.	Univalent functions. General properties. The	Lectures, modeling,	
	family S. The hyperbolic metric on the unit disc.	didactical demonstration,	
	Necessary and sufficient conditions for univalence	conversation. Presentation	
	on the unit disc.	of alternative explanations.	
8.	Harmonic mappings on open subsets of C.	Lectures, modeling,	
	Subharmonic mappings. General results.	didactical demonstration,	
	Applications.	conversation. Presentation	
	11	of alternative explanations.	
9.	Conformal mappings of annuli.	Lectures, modeling,	
	11 8	didactical demonstration,	
		conversation. Presentation	
		of alternative explanations.	
Part II		or arternative explanations.	
		T - 4 4-1:	
10.	. Introduction in the theory of functions of several	Lectures, modeling,	
	complex variables. Holomorphic functions in C ⁿ .	didactical demonstration,	
	The generalized Cauchy-Riemann equations.	conversation. Presentation	
	Integral representation of holomorphic functions on	of alternative explanations.	
	the polyidsc. Sequences and series of holomorphic		
	functions in C ⁿ .		
11.	. Sets of uniqueness for the holomorphic functions in	Lectures, modeling,	
	C ⁿ . The Montel and Vitali theorems. Holomorphic	didactical demonstration,	
	mappings. Biholomorphic mappings in C ⁿ . Fatou-	conversation. Presentation	
	Bieberbach domains. Poincaré's theorem.	of alternative explanations.	
12.	Cartan's uniqueness theorems. The automorphisms	Lectures, modeling,	
	of the Euclidean unit ball and the unit polydisc in	didactical demonstration,	
	C ⁿ .	conversation. Presentation	
	C .	of alternative explanations.	

Bibliography

- 1. I. Graham, G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.
- 2. G. Kohr, *Basic Topics in Holomorphic Functions of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 2003.
- 3. G. Kohr, P.T. Mocanu, *Special Topics of Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).
- 4. P. Hamburg, P.T. Mocanu, N. Negoescu, *Mathmatical Analysis (Complex Functions)*, Editura Didactică și Pedagogică, București, 1982 (in Romanian).
- 5. C.A. Berenstein, R. Gay, *Complex Variables: An Introduction*, Springer-Verlag New York Inc., 1991.
- 6. Conway, J.B., Functions of One Complex Variable, vol. I, Graduate Texts in Mathematics, Springer

Verlag, New York, 1978 (Second Edition).

- 7. K. Güerlebeck, K. Habetha, W. Spröβig, *Holomorphic Functions in the Plane and n-Dimensional Space*, Birkhäuser, Basel-Boston-Berlin, 2008.
- 8. R.C. Gunning, *Introduction to Holomorphic Functions of Several Variables*, vol.I. *Function Theory*, Wadsworth & Brooks/Cole, Monterey, CA, 1990.
- 9. S.G. Krantz, *Function Theory of Several Complex Variables*, Reprint of the 1992 Edition, AMS Chelsea Publishing, Providence, Rhode Island, 2001.
- 10. R. Narasimhan, Several Complex Variables, The University of Chicago Press, Chicago, 1971.
- 11. M. Range, *Holomorphic Functions and Integral Representations in Several Complex Variables* Springer-Verlag, New York, 1986.
- 12. W. Rudin, Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980.

8.2 Seminar	Teaching methods	Remarks
Part I		
Applications of residues to the computation of some real integrals.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	1 hour/week
Applications of the argument principle and Rouché's Theorem.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	1 hour/week
3. Examples of compact families of holomorphic functions. Extremal problems on compact subsets of $H(\Omega)$.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	1 hour/week
Sufficient conditions of univalence for holomorphic functions of one complex variable. Examples of univalent functions.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	1 hour/week
5. The family S. Properties and examples.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	
6. Necessary and sufficient conditions of univalence for holomorphic functions on the unit disc.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	
7. Applications of the Riemann mapping theorem. Conformal mappings of special simply connected domains in C (I).	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	1 hour/week
8. Applications of the Riemann mapping theorem. Conformal mappings of special simply connected domains in C (II).	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	1 hour/week

9. Harmonic mappings. Subharmonic mappings. Examples and applications.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	
Part II 10. Applications of the Cauchy integral representations on the unit polydisc in C ⁿ . Applications of the maximum modulus theorem and the Schwarz Lemma for holomorphic functions of several complex variables.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	1 hour/week
11. Pluriharmonic functions and plurisubharmonic functions. Examples	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	1 hour/week
12. Sufficient conditions of univalence for holomorphic mappings on the unit ball in C ⁿ . Examples of locally biholomorphic mappings. Examples of univalent mappings. Examples of biholomorphic automorphisms of the n-dimensional complex space C ⁿ . Fatou-Bieberbach domains and Runge domains in C ⁿ .	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to PhD students.	1 hour/week

Bibliography

- 1. I. Graham, G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.
- 2. G. Kohr, *Basic Topics in Holomorphic Functions of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 2003.
- 3. G. Kohr, P.T. Mocanu, *Special Topics of Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).
- 4. P. Hamburg, P.T. Mocanu, N. Negoescu, *Mathmatical Analysis (Complex Functions)*, Editura Didactică și Pedagogică, București, 1982 (in Romanian).
- 5. Bulboacă, T., Joshi, S.B., Goswami, P., *Complex Analysis. Theory and Applications*, de Gruyter, Berlin, Boston, 2019.
- 6. Conway, J.B., *Functions of One Complex Variable*, vol. I, Graduate Texts in Mathematics, Springer Verlag, New York, 1978 (Second Edition).
- 7. K. Güerlebeck, K. Habetha, W. Spröβig, *Holomorphic Functions in the Plane and n-Dimensional Space*, Birkhäuser, Basel-Boston-Berlin, 2008.
- 8. R.C. Gunning, *Introduction to Holomorphic Functions of Several Variables*, vol.I. *Function Theory*, Wadsworth & Brooks/Cole, Monterey, CA, 1990.
- 9. S.G. Krantz, *Function Theory of Several Complex Variables*, Reprint of the 1992 Edition, AMS Chelsea Publishing, Providence, Rhode Island, 2001.
- 10. R. Narasimhan, Several Complex Variables, The University of Chicago Press, Chicago, 1971.
- 11. R. Narasimhan, Y. Nievergelt, Complex Analysis in One Variable, Birkhäser, 2001.
- 12. M. Range, *Holomorphic Functions and Integral Representations in Several Complex Variables* Springer-Verlag, New York, 1986.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the PhD programme of all important universities from our country and abroad, where the advanced mathematics plays an essential role. This discipline is useful in specifical PhD research activities, in preparing future researchers in pure and applied mathematics, and for those who use advanced mathematics in other areas of science.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results	Written exam.	60%
	Ability to justify by proofs theoretical results		
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the course at mathematical modeling and analysis of current research problems in pure and applied mathematics.	Evaluation the activity of PhD students during the semester.	40%
10.6 Minimum performance standards			
Ability to apply concepts and results acquired in the course to study special problems in complex analysis.			

Date Signature of course coordinator Signature of seminar coordinator

30.06.2021 Professor PhD Mirela KOHR Professor PhD Mirela KOHR

Date of approval in the Doctoral School Council

07.07.2021

Signature of the Director of the Doctoral School in Mathematics and Computer Science

Professor PhD Gabriela Czibula