SYLLABUS

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca	
institution		
1.2 Faculty	Faculty of Mathematics and Computer Science	
1.3 Department	Doctoral School in Mathematics and Computer Science	
1.4 Field of study	Mathematics	
1.5 Study cycle	Doctoral studies	
1.6 Study programme	TRAINING PROGRAM BASED ON ADVANCED	
	ACADEMIC STUDIES	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Sp	ecial Chapters of Cat	egory	7 Theory	
2.2 Course coor	din	ator		Prof. Dr. Septimiu C	rivei		
2.3 Seminar coo	ordi	nator		Prof. Dr. Septimiu C	rivei		
2.4. Year of	1	2.5	1	2.6. Type of	Ε	2.7 Type of	DS/Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bib	liography, course notes	6		48
Additional documentation (in libraries, on electronic platforms, field documentation)					48
Preparation for seminars/labs, homework, papers, portfolios and essays					36
Tutorship					36
Evaluations					46
Other activities:					
3.7 Total individual study hours 214					
3.8 Total hours per semester250					
3.9 Number of ECTS credits10					

4. Prerequisites (if necessary)

4.1. curriculum	Basic algebraic structures
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

0. specific	competencies acquired
Prof	• ability to perform symbolic calculus in various structures
essio nal com pete ncies	 ability to operate with abstract concepts ability to solve mathematical problems based on learned concepts
Tran	• abstract thinking
svers al com pete ncies	ability to apply mathematics in other scientific fieldsability to perform research

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Study of important knowledge on Category Theory
7.2 Specific objective of the discipline	Acquiring specific working techniques from Category Theory

8. Content

8.1 Course	Teaching methods	Remarks
1. Categories – definition and examples	Exposition, proof, examples	
2. Special objects and morphisms	Exposition, proof, examples	
3. Constructions in categories	Exposition, proof, examples	
4. Products and coproducts	Exposition, proof, examples	
5. Equalizers and coequalizers	Exposition, proof, examples	
6. Pullbacks and pushouts	Exposition, proof, examples	
7. Limits and colimits	Exposition, proof, examples	
8. Natural transformations	Exposition, proof, examples	
9. Equivalences of categories	Exposition, proof, examples	
10. Yoneda Lemma	Exposition, proof, examples	
11. Adjoint functors	Exposition, proof, examples	
12. Grothendieck categories	Exposition, proof, examples	
13. Abelian categories	Exposition, proof, examples	
14. Exact categories	Exposition, proof, examples	
8.2 Seminar	Teaching methods	Remarks
1. Categories – definition and examples	Explanation, examples	
2. Special objects and morphisms	Explanation, examples	
3. Constructions in categories	Explanation, examples	
4. Products and coproducts	Explanation, examples	
5. Equalizers and coequalizers	Explanation, examples	
6. Pullbacks and pushouts	Explanation, examples	
7. Limits and colimits	Explanation, examples	
8. Natural transformations	Explanation, examples	
9. Equivalences of categories	Explanation, examples	
10. Yoneda Lemma	Explanation, examples	

11. Adjoint functors	Explanation, examples
12. Grothendieck categories	Explanation, examples
13. Abelian categories	Explanation, examples
14. Exact categories	Explanation, examples

Bibliography

1. S. Awodey, Category theory, Oxford University Press, 2010.

2. S. Mac Lane, Categories for the working mathematician, Springer, 1998.

3. B. Mitchell, Theory of categories, Academic Press, New York, London, 1965.

4. C. Nastasescu, Inele, module, categorii, Editura Academiei, Bucuresti, 1976.

5. I. Purdea, Tratat de algebra moderna, vol. II, Editura Academiei, Bucuresti, 1982.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Content of the discipline is directed towards theory and applications of categories. This topic is present in many doctoral programs of other universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	Using basic concepts, examples	Test, project	25%		
10.5 Seminar	Problem solving	Presentation, assignments	75%		
10.6 Minimum performance standards					
Grade 5.					

Date	Signature of course coordinator	Signature of seminar coordinator
30.06.2021	Prof. Dr. Septimiu Crivei	Prof. Dr. Septimiu Crivei

Date of approval

Signature of the head of doctoral school

07.07.2021

Prof. dr. Gabriela Czibula