SYLLABUS

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Doctoral School in Mathematics and Computer Science		
1.4 Field of study	Mathematics		
1.5 Study cycle	Doctoral studies		
1.6 Study programme	TRAINING PROGRAM BASED ON ADVANCED		
	ACADEMIC STUDIES		

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline <i>Special topics on approximation of functions</i>							
2.2 Course coordinator Prof. dr. Octavian Agratini							
2.3 Seminar coordinator				Prof. dr. Octavian Agratini			
2.4. Year of	1	2.5	1	2.6. Type of	Е	2.7 Type of	DS / Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1st
					sem.
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bib	liography, course notes	5		48
Additional documentation (in libraries, on electronic platforms, field documentation)					48
Preparation for seminars/labs, homework, papers, portfolios and essays					36
Tutorship					36
Evaluations					46
Other activities:					
3.7 Total individual study hours 214					
3.8 Total hours per semester250					
3.9 Number of ECTS credits 10					

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis
	Functional Analysis
4.2. competencies	Comparative evaluation of the effectiveness of various methods of proofs
5. Conditions (if necessary)	

5.1. for the course ---- 5.2. for the seminar /lab ---- activities ----

6. Specific competencies acquired

0. Speeme	, competencies acquired
Prof	• ability to perform the approximation of signals in various spaces functions
essio nal	• ability to operate with abstract concepts
com	• ability to solve mathematical problems based on learned concepts
pete	
ncies	
Tran svers al com pete ncies	 abstract thinking ability to apply mathematics in other scientific fields ability to perform research

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Study of important knowledge on Approximation of Functions				
7.2 Specific objective of the discipline	Acquiring specific working techniques from Approximation Processes				

8. Content

8.1 Course	Teaching methods	Remark
		S
1. Spaces of functions. Properties	Exposition, proof, individual study	
2. Linear and positive approximation operators.	Exposition, proof, examples	
Properties		
3. Korovkin sets	Exposition, proof, individual study	
4. Moduli of smoothness and error of evaluation	Exposition, proof, individual study	
5. Approximations in weighted spaces	Exposition, proof, individual study	
6. Statistical convergence	Exposition, proof, examples	
7. Fourier transform of integrable functions	Exposition, proof, individual study	
8. Fourier transform with sliding window	Exposition, proof, examples	
9. Wavelets - preliminaries	Exposition, proof, examples	
10. Multiple resolution analysis	Exposition, proof, individual study	
11. Father wavelet function. Properties	Exposition, proof, examples	
12. Mother wavelet function. Properties	Exposition, proof, individual study	
8.2 Seminar	Teaching methods	Remark s
1. Bernstein operators. Properties	Explanation, examples	
2. Examples of approximation processes	Explanation, individual study	
3. Generalizations of Korovkin's theorems	Explanation, examples	
4. Convergence rate evaluation. Exercises	Explanation, examples	
5. Weighted functions. Korovkin type theorems	Explanation, examples	
6. Statistical convergence of sequences of linear and positive operators. Examples	Explanation, individual study	

7. Exercises: Fourier transforms	Explanation, examples			
8. Examples of window functions. Calculating the center and	Explanation, individual study			
radius of a window				
9. Properties of B-spline functions	Explanation, examples			
10. Two scale equation. Solutions	Explanation, examples			
11. Examples of father wavelets	Explanation, individual study			
12. Reconstruction of the signals by using wavelets Explanation, individual study				
Bibliography				
[1] Agratini, O., Blaga, P., Coman, Gh., Lectures on Wavelets, Numerical Methods and Statistics,				
Casa Cărții de Știință, Cluj-Napoca, 2005.				
[2] Altomare F., Campiti, M., Korovkin-type Approximation Theory and its Applications,				
de Gruyter Series Studies in Mathematics, Vol. 17, Walter de Gruyter & Co.,				
Berlin, New York, 1994.				
[3] Lokenath Debnath, Wavelet Transforms & Their Applications, Birkhauser, Boston, 2002.				

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Content of the discipline is directed towards theory and applications. This topic is present in many doctoral programs of other universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Using basic concepts, examples	Test, project	25%			
10.5 Seminar	Problem solving	Presentation, assignments	75%			
10.6 Minimum performance standards						
Grade 5.						

Date

Signature of course coordinator

Prof. dr. Octavian Agratini

Signature of seminar coordinator

30.06.2021

Prof. dr. Octavian Agratini

Date of approval

Signature of the head of doctoral school

07.07.2021

Prof. dr. Gabriela Czibula