SYLLABUS

ri mormation regarand the programme				
1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Doctoral School in Mathematics and Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Doctoral studies			
1.6 Study programme	TRAINING PROGRAM BASED ON ADVANCED			
	ACADEMIC STUDIES			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Search-based Software Engineering							
2.2 Course coordinator Prof. PhD Czibula Istvan							
2.3 Seminar coordinator				Prof. PhD Czibula Istvan			
2.4. Year of	1	2.5	1	2.6. Type ofC2.7 Type ofOptional			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3	1 sem
		course		seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5	24	3.6	12
		course		seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					72
Preparation for seminars/labs, homework, papers, portfolios and essays					73
Tutorship					13
Evaluations					16
Other activities:				-	
3.7 Total individual study hours214					

5.7 Total mulvidual study hours	214
3.8 Total hours per semester	250
3.9 Number of ECTS credits	10

4. Prerequisites (if necessary)

4.1. curriculum	Software Engineering, Artificial intelligence
4.2. competencies	Good programming skills

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

Prof essio	• Advanced ability to approach, model and solve phenomena and problems from nature and economy using fundamental knowledge from mathematics and computer science.
nal com pete ncies	 Ability to approach and solve complex problems using various techniques of computational intelligence. Proficient use of methodologies and tools specific to programming languages and software systems.
Tran svers al com pete ncies	 Ethic and fair behaviour, commitment to professional deontology Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negotiation abilities; Entrepreneurial skills; working with economical knowledge; continuous learning Good English communication skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To present the field of Search Based Software Engineering as a new research and application domain of software engineering.
7.2 Specific objective of the discipline	 To introduce the student a new field of Software Engineering- Search Based Software Engineering. To induce the necessity and importance of using computational intelligence techniques for solving software engineering problems. To present some important activities within software engineering and how are they solved using computational intelligence techniques.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction	• Interactive exposure	
• Search Based Software Engineering	• Explanation	
 Main concepts and approached problems 	Conversation	
	Didactical	
	demonstration	
2. Machine learning in Software Engineering	• Interactive exposure	
 Machine learning techniques 	• Explanation	
 Applications 	Conversation	
	Didactical	
	demonstration	
3. CI techniques for Program Comprehension	• Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	
4. CI techniques for Refactoring	• Interactive exposure	

	• Explanation
	• Conversation
	• Didactical
	demonstration
5. CI techniques for Defect Detection and	• Interactive exposure
prediction	• Explanation
	Conversation
	• Didactical
	demonstration
6. CI techniques for Software Testing	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
7. CI techniques for Software Vizualization	Interactive exposure
	• Explanation
	• Conversation
	Didactical
	demonstration
8. CI techniques for Effort prediction and Cost	• Interactive exposure
estimation	• Explanation
	• Conversation
	• Didactical
	demonstration
9. CI techniques for Software Reuse	Interactive exposure
1	• Explanation
	Conversation
	Didactical
	demonstration
10. CI techniques for Design Patterns identification	Interactive exposure
	• Explanation
	Conversation
	 Didactical
	demonstration
11. SBSE research reports presentation	Interactive exposure
in oboli research reports presentation	Conversation
12. SBSE research reports presentation	Interactive exposure
12. ODOL research reports presentation	Conversation

Bibliography

- 1. Czibula, I., G., Use of search techniques to software development, Editura Risoprint, ISBN 978-973-53-0119-4, 2009 (248 pagini)
- 2. Mark Harman and Bryan F. Jones. Search-based software engineering. Information & Software Technology, 43(14):833-839, 2001.
- 3. Olaf Seng, Johannes Stammel, and David Burkhart. Search-based determination of refactorings for improving the class structure of object-oriented systems. In GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 1909{1916, New York, NY, USA, 2006. ACM Press.
- 4. Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics based refactoring. In CSMR '01: Proceedings of the Fifth European Conference on Software Maintenance and Reengineering, pages 30-38, Washington, DC, USA, 2001. IEEE Computer Society.

8.2 Seminar / laboratory	Teaching methods	Remarks
		The seminar is
		structured as 2 hours

	classes every second week
1. Survey of the sources of information available on	• Documentation
Internet and Intranet; chosing the paper topic and	• Explanation
scheduling the presentation.	Conversation
2-4. Presentation of theoretical research reports. Each	• Presentation
PhD student will have to prepare and present a	• Explanation
theoretical research report. The report will present	Conversation
the current state-of-the-art in the field of a selected	
SBSE topic .	
5-7. Presentation of a software project. Each PhD	• Presentation
student will have to prepare and present a software	• Explanation
project on the SBSE topic chosen at the theoretical	Conversation
report.	

Bibliography

- 1. Czibula, I., G., Use of search techniques to software development, Editura Risoprint, ISBN 978-973-53-0119-4, 2009 (248 pagini)
- 2. Mark Harman and Bryan F. Jones. Search-based software engineering. Information & Software Technology, 43(14):833-839, 2001.
- 3. Olaf Seng, Johannes Stammel, and David Burkhart. Search-based determination of refactorings for improving the class structure of object-oriented systems. In GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 1909{1916, New York, NY, USA, 2006. ACM Press.
- Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics based refactoring. In CSMR '01: Proceedings of the Fifth European Conference on Software Maintenance and Reengineering, pages 30-38, Washington, DC, USA, 2001. IEEE Computer Society.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other PhD programs from romanian universities and universities from abroad.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4-5 Course	• A theoretical research report on a SBSE topic based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	50%
	• A software project on a SBSE topic will be fully implementied, without using existing frameworks	Evaluation of the experimental report (documentation and demonstration)	50%
10.6 Minimum perform	nance standards		·
• Each PhD student h	has to prove that (s)he acquired an	n acceptable level of knowledg	ge and understanding

of the SBSE domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

Signature of course coordinator

Signature of seminar coordinator

30.06.2021

Date

Prof. dr. Istvan Gergely Czibula

Prof. dr. Istvan Gergely Czibula

Cribic

Capila

Signature of the head of doctoral school

Prof. dr. Gabriela Czibula G/3

Date of approval

07.07.2021