SYLLABUS

${\bf 1.} \ {\bf Information} \ {\bf regarding} \ {\bf the} \ {\bf programme}$

1.1 Higher education institution	Babeş Bolyai University, Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Mathematics and Computer Science - English

2. Information regarding the discipline

2.1 Name of the discipline	Optimization Techniques				
2.2 Course coordinator	Prof. Nicolae Popovici, Ph.D. Habil.				
2.3 Seminar coordinator	Prof. Nicolae Popovici, Ph.D. Habil.				
2.4. Year of study 3 2.5 Semester	6 2.6. Type of Exam 2.7 Type of Compulsory				
	evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6 seminar	12
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				24	
Additional documentation (in libraries, on electronic platforms, field documentation)				6	
Preparation for seminars/labs, homework, papers, portfolios and essays				12	
Tutorship				12	
Evaluations				10	
Other activities:					

3.7 Total individual study hours	64
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Algebra 1 (Linear Algebra)		
	• Mathematical Analysis 2 (Differential Calculus on R ⁿ)		
4.2. competencies	Ability to use basic theoretical notions and practical methods of linear		
	algebra and mathematical analysis.		

5. Conditions (if necessary)

5.1. for the course	Beamer projector
5.2. for the seminar /lab activities	 Standard infrastructure

6. Specific competencies acquired

e competencies acquired
C1.4 Identify the appropriate mathematical models and methods for solving real-life problems.
C3.1 Identify the fundamental notions and results needed to develop numerical algorithms.
CT1 Work effectively and rigorously; adopt a responsible attitude towards science and
learning; use the own creative potential; obey the rules and principles of professional ethic.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Study the mathematical foundations of several important optimization techniques, which are currently used in Operational Research.
7.2 Specific objective of the discipline	Students should acquire knowledge about:

8. Content

8.1 Course	Teaching methods	Remarks
1. Optimization problems in general setting; Classical models.	Direct instruction, mathematical proof, exemplification	
2. Level sets; Existence and unicity of optimal solutions.	Direct instruction, mathematical proof, exemplification	
3. Convex sets; Extreme points.	Direct instruction, mathematical proof, exemplification	
4. Convex functions and some properties of their extrema.	Direct instruction, mathematical proof, exemplification	
5. Linear optimization problems; Duality theorems.	Direct instruction, mathematical proof, exemplification	
6. Primal feasible bases, dual feasible bases, and optimal bases.	Direct instruction, mathematical proof, exemplification	
7. The Simplex Algorithm in primal form.	Direct instruction, mathematical proof, exemplification	
8. The Simplex Algorithm in dual form.	Direct instruction, mathematical proof, exemplification	

9. Dual problems and extended problems - involving	Direct instruction,
additional constraints.	mathematical proof,
	exemplification
10. Matrix games.	Direct instruction,
	mathematical proof,
	exemplification
11. The relationship between the matrix games and the	Direct instruction,
linear optimization problems.	mathematical proof,
	exemplification
12. Convex optimization problems.	Direct instruction,
	mathematical proof,
	exemplification

Bibliography

- 1. BOYD, S., VANDENBERGHE, L.: Convex Optimization, Cambridge University Press, 2004.
- 2. BRECKNER, B.E., POPOVICI, N., Convexity and Optimization. An Introduction, EFES, Cluj-Napoca, 2006.
- 3. BRECKNER, W.W., Cercetare operatională, Universitatea Babeş-Bolyai, Cluj-Napoca, 1981.
- 4. POPOVICI, N., Optimizare vectoriala, Casa Cartii de Stiinta, Cluj-Napoca, 2005.
- 5. MORDUKHOVICH, B.S., NAM, N.M., An easy path to convex analysis and applications, Morgan & Claypool Publishers, Milton Keynes, 2014.
- 6. VANDERBEI, R.: Linear Programming. Foundations and Extensions, Springer, Boston, 2008.

8.2 Seminar	Teaching methods	Remarks
1-2. Special classes of convex sets.	Problem-based	
	instruction, debate,	
	mathematical proofs	
3-4. Convex functions; Generalized convexity.	Problem-based	
	instruction, debate,	
	mathematical proofs	
5-6. Optimization problems solved by the Simplex	Problem-based	
Algorithm in primal form.	instruction, debate,	
	mathematical proofs	
7-8. Optimization problems solved by the Simplex	Problem-based	
Algorithm in dual form.	instruction, debate,	
	mathematical proofs	
9-10. Matrix games.	Problem-based	
	instruction, debate,	
	mathematical proofs	
11-12. Convex optimization problems.	Problem-based	
	instruction, debate,	
	mathematical proofs	

Bibliography

- 1. BRECKNER, B.E., POPOVICI, N., Probleme de analiza convexa in Rⁿ. Casa Cartii de Stiinta, Cluj-Napoca, 2003.
- 2. BRECKNER, B.E., POPOVICI, N., Probleme de cercetare operationala, EFES, Cluj-Napoca, 2006.
- 3. BRECKNER, W.W., DUCA, D., Culegere de probleme de cercetare operationala, Universitatea Babes-Bolyai, Facultatea de Matematica, Cluj-Napoca, 1983.
- 4. DUREA, M., O introducere in teoria optimizarii neliniare, Tehnopress, Iasi, 2012.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course ensures a solid theoretical background, according to national and international standards, within bachelor programmes, on optimization theory, operations research, management, etc.
- The optimization techniques are currently applied in industry, medicine, insurance, etc.

10. Evaluare

Date of approval

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	- Knowledge of theoretical concepts and capacity to rigorously prove the main theorems; - Ability to solve practical exercises and theoretical problems	Written exam	75%
10.5 Seminar/lab activities	Attendance and active class participation	Continuous evaluation	25%
10.6 Minimum performance	estandards		
The final grade should be gr	reater than or equal to 5.		

Date	Signature of course coordinator	Signature of seminar coordinator
27.04.2021	Prof. Nicolae Popovici, Ph.D. Habil.	Prof. Nicolae Popovici, Ph.D. Habil.

Signature of the head of department

28.04.2021 Prof. Octavian Agratini, Ph.D.