SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Astronomy				
2.2 Course coordinator Conf. Dr. Cristina Blaga							
2.3 Seminar coordinator				Conf. Dr. Cristina Blaga			
2.4. Year of	3	2.5	5	2.6. Type of	Е	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	14/14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					4
Evaluations					4
Other activities:				2	
_				·	

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	Acces to the astronomical instruments from the Astronomical
activities	Observatory of the BBU.

6. Specific competencies acquired

0. Specif	te competencies acquired
ional	C1.1 The ability to identify concepts, theories and use of specific description language C2.1 The ability to identify basic concepts used in the description of specific phenomena
Professional competencies	and processes C4.5 The ability to produce a mathematical model for a certain problem.
Transversal competencies	CT1. Applying rigorous and efficient work rules, displaying a responsible attitude towards the scientific and educational and creative order to maximize their potential in specific situations with respect to the basic principles and norms of professional ethics

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquiring theoretical and practical knowledge necessary for understanding the principles and methods of astronomy.
7.2 Specific objective of the discipline	 Introduction of basic notions about spherical astronomy (celestial sphere, positions of celestial bodies on the celestial sphere, real and apparent motion of celestial bodies), solar system and stellar properties deduced from observations. Assimilating this knowledge allows understanding of phenomena observed in the sky, such as sunrise and sunset of celestial bodies, solar and Moon eclipses, their visibility from a given place and other astronomical phenomena.

8. Content

8.1 Course	Teaching methods	Remarks
1. The subject and branches of Astronomy.	The lecture,	
Spherical Astronomy. Celestial coordinates:	description,	
horizontal, equatorial, ecliptic and galactic	exemplification using	
system.	multimedia	
2. Precession and nutation. Changing the	The lecture,	
equatorial coordinates due to precession and	description,	
nutation. Sidereal time, true solar time, average	exemplification using	
solar time, equation of time.	multimedia	
3. Transformation of sidereal time in mean solar	The lecture,	
time and vice-versa. Time and longitude. Year	description,	
(tropic, calendar, sidereal and anomalistic).	exemplification using	
Precise measurement of time.	multimedia	
4. Fundamental astronomy. Determining absolute	The lecture,	
and relative position of a star. Fundamental	description,	
star catalogs. Phenomena that change the	exemplification using	
position of heavenly bodies in the sky:	multimedia	
astronomical refraction.		
5. The aberration of light. Parallax, parsec	The lecture,	
distance measurement unit used in astronomy.	description,	
Reducing observations on the positions of the	exemplification using	

stars.	multimedia
6. General description of the solar system. Two-	The lecture,
body problem. Kepler's Laws. The orbits of the	description,
planets. Earth's orbit. Astronomical seasons.	exemplification using
-	multimedia
7. The orbits of the Earth artificial satellites and	The lecture,
cosmic rockets. Earth-Moon system.	description,
Movement around the Earth. Phases of the	exemplification using
Moon. Moon's rotation on its axis.	multimedia
8. Solar and Moon eclipses. Physical data about	The lecture,
planets. Energy balance and surface	description,
temperature planets.	exemplification using
	multimedia
9. Chemical composition and stability of	The lecture,
planetary atmospheres. The interior of planets.	description,
Roche limit and planetary rings.	exemplification using
	multimedia
10. The landforms observed on the surface of	The lecture,
terrestrial planets. Large satellites of the giant	description,
planets.	exemplification using
	multimedia
11. Dwarf planets (Ceres and plutoids).	The lecture,
	description,
	exemplification using
	multimedia
12. Asteroids (motion, physical properties)	The lecture,
	description,
	exemplification using
	multimedia
13. Comets (motion and physical properties).	The lecture,
Condition storm, meteors and meteorites	description,
	exemplification using
	multimedia
14. Cosmogony. Theories on solar system	The lecture,
formation.	description,
	exemplification using
DU U	multimedia
Bibliography	

Bibliography

- 1. BIRNEY S.D.: Observational Astronomy, Cambridge University Press, 1991.
- 2. LENA P., LEBRUN F., MIGNARD F.: Observational Astrophysics, Springer, 1996.
- 3. POP V., BLAGA C.: Astronomie observationala, Editura Risoprint, Cluj-Napoca, 2005.
- 4. STERKEN C., MANFROID J.: Astronomical Photometry, Kluwer Academic Publishers, 1992.
- 5. URECHE V.: Universul, Astrofizica, vol. II, Editura Dacia, Cluj-Napoca, 1985.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Seminar (2 hours) Spherical trigonometry.	Description,	
Gauss formulae	explanation,	
	conversation.	
2. Laboratory (2 hours) Boreal sky map. The	Description,	
distribution of stars in the constellations and	explanation,	
their recognition by using alignments. The first	conversation,	
astronomical observations.	individual study and /	
	or team.	
3. Seminar (2 hours) Celestial coordinates	Description,	
transformations.	explanation,	
	conversation	

4. Laboratory (2 hours) Julian date corresponding to a given calendar date. Calculate the number of days in a given period with the aid of julian date.	Description, explanation, conversation, individual study and / or team.
5. Seminar (2 hours) Rising and setting of stars.	Description, explanation, conversation
6. Laboratory (2 hours) Refracting and reflecting telescopes. Astronomical observation through an astronomical instrument (different appearance of planets, stars and diffuse objects through the instrument).	Description, explanation, conversation, individual study and / or team.
7. Seminar (2 hours) Time. Sidereal and mean solar time.	Description, explanation, conversation
8. Laboratory (2 hours) Observing the Moon through a telescope.	Description, explanation, conversation, individual study and / or team.
9. Seminar (2 hours) Motion in the solar system. Kepler's Laws. (I)	Description, explanation, conversation
10. Laboratory (2 hours) Astronomical Software (Astronomical Laboratory (alw) and Skymaps)	Description, explanation, conversation, individual study and / or team.
11. Seminar (2 hours) Motion in the solar system. Kepler's Laws. (II)	Description, explanation, conversation
12. Laboratory (2 hours) Solar declination through a simple astronomical observation.	Description, explanation, conversation, individual study and / or team.
13. Seminar (2 hours) Small bodies in the solar system.	Description, explanation, conversation
14. Laboratory (2 hours) A plan for astronomical observations for a given calendar date. The plan must contain information about Sun (set and rise), twilight, visibility of Moon and planets, constellations at 20 UT gathered using a sky map, a celestial mapping program or internet sources. Bibliography	Description, explanation, conversation, individual study and / or team.

Bibliography

- 1. CUREA, I.: Atlas stelar descriptiv, Tipografia Universitatii Timisoara, 1970.
- 2. KARTUNEN, H., KROGER, P., OJA, H., POUTANEN, M., DONNER, K., J., Fundamental Astronomy, Springer, Berlin, Heidelberg, 1994.
- 3. PAL A., POP V., URECHE V.: Astronomie, Culegere de probleme, Presa Universitara clujeana, Cluj-Napoca, 1998.
- 4. POP V., POP D.: Trigonometrie plana si trigonometrie sferica, Presa Universitara clujeana, Cluj-Napoca, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The notions acquired in the course enables graduates to propose astronomy as a subject in the curriculum according to the school, student circles to organize and / or participate in the preparation of students wishing to participate in school competitions of Astronomy.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of the concepts introduced and their use in solving problems	Written examination (theory and problems)	3/5
10.5 Seminar/lab activities	concepts learned in theoretical or practical problem	Continuous evaluation of student participation in teaching activities	2/5

10.6 Minimum performance standards

The students must solve correctly and in due time the homework. At the examination they must show that they understood the concepts introduced and can work with them.

Date	Signature of course coordinator	Signature of seminar coordinator
28 th of April 2021	Conf. Dr. Cristina Blaga	Conf. Dr. Cristina Blaga
Date of approval	Signature of the head of department	
	Prof. Dr. Octavian Agratini	