SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor of Science
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline	Real Analysis
2.2 Course coordinator	Conf. dr. Adriana Nicolae
2.3 Seminar coordinator	Conf. dr. Adriana Nicolae
2.4. Year of study 2 2.5 Semester	4 2.6. Type of evaluation C 2.7 Type of discipline Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:	Time allotment:				
Learning using manual, course supp	ort, bi	bliography, course not	es		25
Additional documentation (in librari	es, on	electronic platforms, f	ield o	locumentation)	10
Preparation for seminars/labs, homework, papers, portfolios and essays			20		
Tutorship			4		
Evaluations			10		
Other activities			-		
3.7 Total individual study hours 69					
3.8 Total hours per semester	125				
3.9 Number of ECTS credits	5				

4. Prerequisites (if necessary)

4.1. curriculum	• Calculus 1, 2
4.2. competencies	Analytic thinking

5. Conditions (if necessary)

5.1. for the course	Lecture hall equipped with blackboard
5.2. for the seminar /lab activities	Classroom equipped with blackboard

6. Specific competencies acquired

Professional competencies	 C1.1 Identification of notions, description of theories and use of specific language. C1.4 Recognition of main classes/types of mathematical problems and of appropriate techniques for solving them. C5.2 Use of mathematical arguments to prove mathematical results.
Transversal competencies	CT1 Application of efficient and rigorous working rules by adopting responsible attitudes towards the scientific and didactic fields for the development of the own creative potential respecting professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of	To acquire fundamental knowledge about general measure theory and
the discipline	integration and to apply it in solving problems.
7.2 Specific objective of	To acquire knowledge about elements of general measure theory and
the discipline	integration (e.g., σ-algebras, measures, outer measures, Lebesgue
	measure, integration of measurable functions, limit theorems, normed
	spaces, Hilbert spaces, L^p spaces).

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction: the problem of measure.	Lecture, discussion, didactical	
Measurable spaces and measure spaces	demonstration, problematisation	
2. Exterior measurea	Lecture, discussion, didactical	
	demonstration, problematisation	
3. The Lebesgue measure	Lecture, discussion, didactical	
	demonstration, problematisation	
4. Measurable functions	Lecture, discussion, didactical	
	demonstration, problematisation	
5. Approximation of measurable functions.	Lecture, discussion, didactical	
Littlewood's three principles	demonstration, problematisation	
6. Types of convergence	Lecture, discussion, didactical	
	demonstration, problematisation	
7. Integration of measurable functions (I)	Lecture, discussion, didactical	
	demonstration, problematisation	
8. Integration of measurable functions (II)	Lecture, discussion, didactical	
	demonstration, problematisation	
9. Limit theorems and applications (I)	Lecture, discussion, didactical	
	demonstration, problematisation	
10. Limit theorems and applications (II). The	Lecture, discussion, didactical	
relation between the Riemann and Lebesgue	demonstration, problematisation	
integrals.		
11. Lebesgue's Differentiation Theorem	Lecture, discussion, didactical	
	demonstration, problematisation	
12. Normed spaces and Hilbert spaces	Lecture, discussion, didactical	
	demonstration, problematisation	
13. L^p spaces (I)	Lecture, discussion, didactical	
	demonstration, problematisation	
14. L^p spaces (II)	Lecture, discussion, didactical	
	demonstration, problematisation	

Bibliography

- 1. V. Anisiu, Topologie și teoria măsurii, Universitatea "Babeș-Bolyai", Cluj-Napoca, 1993.
- 2. J.J. Benedetto, W. Czaja, Integration and modern analysis, Birkhäuser, Boston, MA, 2009.
- 3. D.L. Cohn, Measure theory, 2nd ed., Birkhäuser/Springer, New York, 2013.
- 4. G.B. Folland, Real analysis. Modern techniques and their applications, 2nd ed., John Wiley & Sons, Inc., New York, 1999.
- 5. F. Jones, Lebesgue integration on Euclidean space, Jones and Bartlett Publishers, Boston, MA, 1993.
- 6. H.L. Royden, P.M. Fitzpatrick, Real analysis, 4th ed., Pearson, 2010.
- 7. W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.
- 8. E. Stein, R. Shakarchi, Real analysis. Measure theory, integration, and Hilbert spaces, Princeton University Press, Princeton, NJ, 2005.
- 9. T. Tao, An introduction to measure theory, American Mathematical Society, Providence, RI, 2011.

8.2 Seminar	Teaching methods	Remarks
Introduction: the problem of measure. Measurable spaces and measure spaces	Discussion, problem solving, didactical demonstration	
2. Exterior measurea	Discussion, problem solving, didactical demonstration	
3. The Lebesgue measure	Discussion, problem solving, didactical demonstration	
4. Measurable functions	Discussion, problem solving, didactical demonstration	
Approximation of measurable functions. Littlewood's three principles	Discussion, problem solving, didactical demonstration	
6. Types of convergence	Discussion, problem solving, didactical demonstration	
7. Integration of measurable functions (I)	Discussion, problem solving, didactical demonstration	
8. Integration of measurable functions (II)	Discussion, problem solving, didactical demonstration	
9. Limit theorems and applications (I)	Discussion, problem solving, didactical demonstration	
10. Limit theorems and applications (II). The relation between the Riemann and Lebesgue integrals.	Discussion, problem solving, didactical demonstration	
11. Lebesgue's Differentiation Theorem	Discussion, problem solving, didactical demonstration	
12. Normed spaces and Hilbert spaces	Discussion, problem solving, didactical demonstration	
13. L ^p spaces (I)	Discussion, problem solving, didactical demonstration	
14. L ^p spaces (II)	Discussion, problem solving, didactical demonstration	

Bibliography (in addition to the books mentioned before which also contain exercises)

1. R.L. Schilling, Measures, integrals and martingales, Cambridge University Press, New York, 2005.

2. W.J. Kaczor, M.T. Nowak, Problems in Mathematical Analysis III. Integration, American Mathematical Society, Providence, RI, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards. This discipline is useful in preparing future teachers and researchers in mathematics, but is also addressed to those who use various modern mathematical methods and techniques in other areas.

10. Evaluation

101 11 THIRD II			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade
10.4 Course	- Knowledge of basic	- Test, exam	- Test: 35%
	notions, examples and	- Lecture and seminar	- Exam: 65%
	results	activity	- Lecture and seminar
	- Ability to prove		activity: bonus max.
	theoretical results		5% (added if the
10.5 Seminar/lab	- Problem solving using		average is at least 5)
activities	concepts and results		_
	acquired during the		

	lecture classes - Attendance according to the rules of the faculty		
10.6 Minimum performance standards			
The final grade should be at least 5.			

Date Signature of course coordinator 20.04.2021 Conf. dr. Adriana Nicolae

Signature of seminar coordinator Conf. dr. Adriana Nicolae

Date of approval 28.04.2021

Signature of the head of department Prof. dr. Octavian Agratini