SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics and Informatics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Informatics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Special Chapters of Ordinary Differential Equations								
2.2 Course coordinator Conf. dr. Adriana Buică								
2.3 Seminar coordinator Conf. dr. Adriana Buică								
2.4. Year of	2	2.5	4	2.6. Type of VP 2.7 Type of Optional				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					10
Evaluations					4
Other activities:					-
0 = m 11 11 11 1 1 1		0.4			

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	First Course on Differential Equations
4.2. competencies	Mathematical analysis

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard
5.2. for the seminar /lab	Classroom with blackboard
activities	

6. Specific competencies acquired

Professional competencies	C 2.4. To recognize the main types of mathematical problems and to be able to select the proper techniques and methods for solving them. C 4.2. To explain and give a proper interpretation of the mathematical models. C 5.2. To be able to use the mathematical reasoning in the proofs.
Transversal competencies	 CT1 To apply the rules of organized and efficient work, of responsible attitudes toward the didactic-scientific domain, for the creative valorization of their own potential, respecting the principles and the norms of the professional ethic. CT3 To use some efficient methods and techniques to learn, to inform themselves, to do research and to develop the abilities for the valorization of their knowledges, to adapt to a dynamical society, and to communicate.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	A deeper understanding of the notions, results and applications of the theory of differential equations
7.2 Specific objective of the discipline	 To understand the different phenomena of dependence on initial conditions and parameters: continuous dependence, stability, topological equivalence, structural stability, bifurcations Introduction to the existence and stability of the equilibria and of the periodic solutions

8. Content

8.1 Course		Teaching methods	Remarks
qual	first notions and problems in the litative theory of scalar nonautonomous erential equations.	Interactive exposureExplanationConversationDidactical demonstration	
2. Max	ximal solutions.		
	ver and upper solutions, direction field, nmetries of differential equations		
	ntinuity and differentiability with pect to the initial data and parameters		
5. Scal	lar continuous dynamical systems.		
6. Sca	ılar discrete dynamical systems.		
	lar periodic differential equations: ssera's theorem. Test.		
	lar periodic differential equations: The ncare map.		
	lar periodic differential equations: The raging method.		
	nar autonomous systems: first integrals and servative systems.		
	ear planar autonomous systems. pological equivalence.		

12. Stability of equilibria of planar systems.	
13. Topological equivalence of two planar systems	
in a neighborhood of a hyperbolic equilibrium	
point. Test.	
14. Interesting phenomena in the theory of	
dynamical systems.	

Bibliography

- 1. A. Buica, Lecture notes available at the webpage http://www.math.ubbcluj.ro/~abuica/csEcDif.htm
- 2. P. Blanchard, R.L. Devaney, G.R. Hall, Differential Equations, Brooks/Cole, Cengage Learning, 2012.
- 3. J. Hale, H. Koçak, Dynamics and bifurcations, Springer-Verlag, 1991.

4. R.Precup, Ecuatii diferentiale, Risoprint, Cluj-Napoca, 2011.

8.2 Seminar / laboratory	Teaching methods	Remarks
1-4. The study of scalar nonautonomous differential	Explanation	
equations.	Conversation	
	Didactical	
	demonstration	
5 Scalar autonomous differential equations: the study of		
some population dynamics models depending on some		
parameters.		
6. Scalar discrete dynamical systems: stability of fixed		
points		
7-10. Scalar autonomous periodic equations: the study of		
some population dynamics models.		
11-12. Planar autonomous systems: the harmonic		
oscillator equation, the pendulum equation, the		
Lotka-Volterra system.		
13-14. Planar autonomous systems: stability of equilibria.		

Bibliography

- 1. The webpage of the course http://www.math.ubbcluj.ro/~abuica/csEcDif.htm
- 2. P. Blanchard, R.L. Devaney, G.R. Hall, Differential Equations, Brooks/Cole, Cengage Learning, 2012.
- 3. J. Hale, H. Koçak, Dynamics and bifurcations, Springer-Verlag, 1991.
- 4. R. Precup, Differential equations, De Gruyter, 2018.
- 5. Ioan I. Vrabie, Differential Equations, World Scientific, 2004.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is synchronized with the curriculum of most of the important universities from our country and from abroad where the applied mathematics plays an important role.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	To know the notions and their properties by examples or counterexamples. To be able to apply the theoretical results in concrete problems.	Two tests	60%

10.5 Seminar activities	• Solving problems skills through		30%
	homeworks		
10.6 Minimum performance standards			
The minimum passing grade is 5.			

Date Signature of course coordinator Signature of seminar coordinator

28-04-2021 Conf. dr. Adriana Buică Conf. dr. Adriana Buică

Date of approval Signature of the head of department

28-04-2021 Prof. dr. Octavian Agratini