SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babes-Bolyai University, Cluj-Napoca
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

		•			
2.1 Name of the discipl	line Co	mplements of Mat	hematic	al Analysis	
2.2 Course coordinator		Lect. dr. Berinde S	Stefan		
2.3 Seminar coordinato	or	Lect. dr. Berinde S	Stefan		
2.4. Year of study 2	2.5 4	2.6. Type of	VP	2.7 Type of	Op.
	Semester	evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laborator	y2
3.4 Total hours in the curriculum 56 Of which: 3.5 course 28 3.6 seminar/labora				3.6 seminar/laborator	y 28
Time allotment:					
Learning using manual, course suppo	rt, bib	liography, course notes	5		30
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					14
Evaluations					20
Other activities:					
3.7 Total individual study hours 94					
3.8 Total hours per semester 150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis I
4.2. competencies	• Understanding calculus on the real axis

5. Conditions (if necessary)

5.1. for the course	Course is offered in Romanian language only!	
	Class room with blackboard and overhead projector	
5.2. for the seminar /lab	Seminar is offered in Romanian language only!	
activities	Class room with blackboard	

6. Specific competencies acquired

ional encies	• maten	C1.5 Elaborarea unor proiecte si lucrari de prezentare a unor rezultate si metode natice.
Profess compet	•	C5.4 Evaluarea comparativa si utilizarea eficienta a diferitelor metode de demonstratie
Transversal competencies	•	CT2. Desfasurarea eficienta si eficace a activitatilor organizate in echipa

7.1 General objective of the discipline Complementary results from the field of classical analysis on the real axis 7.2 Specific objective of the discipline introduction to theory of continued fractions solving linear recurrences by methods of characteristic equation and generating function computational techniques based on operations with power series study of some remarcable series and products, and their connection with Riemann zeta function applications to number theory and combinatorics

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course		Teaching methods	Remarks
1. A sho	ort history of mathematical analysis	interactive exposure, explanation,	
		didactical demonstration	
2. Real	numbers – irrationality and	interactive exposure, explanation,	
transe	cendence	didactical demonstration	
3. Real	numbers – continued fractions	interactive exposure, explanation,	
		didactical demonstration	
4. Appl	ications of continued fractions	interactive exposure, explanation,	
		didactical demonstration	
5. Linea	ar homogenous recurrent sequences	interactive exposure, explanation,	
		didactical demonstration	
6. Linea	ar nonhomogenous recurrent sequences	interactive exposure, explanation,	
		didactical demonstration	
7. Nonla	inear recurrent sequences. Techniques	interactive exposure, explanation,	
of lin	earisation	didactical demonstration	
8. Extre	eme limits of a sequence	interactive exposure, explanation,	
		didactical demonstration	
9. Operation	ations with power series (I)	interactive exposure, explanation,	
		didactical demonstration	
10. Operation	ations with power series (II)	interactive exposure, explanation,	

	didactical demonstration	
11. The method of generating function	interactive exposure, explanation,	
	didactical demonstration	
12. Applications of recurrences to counting	interactive exposure, explanation,	
problems	didactical demonstration	
13. From counting problems to combinatorial	interactive exposure, explanation,	
games	didactical demonstration	
14. Due examination		

Bibliography

1. Hardy G.H. et al.: An introduction to the theory of numbers, Oxford University Press, 2008

2. Mickens R.E.: Difference equations. Theory, applications and advanced topics, CRC Press, 2015

3. Wilf H.S.: generatingfunctionology, A.K. Peters Ltd., Massachusetts, 2006

4. Zorich V.A.: Mathematical Analysis I, Springer, 2004

5. ***: Pagina cursului Complemente de analiza matematica (notite de curs ale titularului), *http://math.ubbcluj.ro/~sberinde/comp/*

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Classic inequalities	project exposure by student team	2-3 students
2. Remarcable numbers as limits of sequences	project exposure by student team	2-3 students
3. Irrationality and transcendence of some	project exposure by student team	2-3 students
remarcable numbers		
4. Toeplitz theorem and applications	project exposure by student team	2-3 students
5. Arithmetic-geometric mean. Gauss formula	project exposure by student team	2-3 students
6. Stirling formula	project exposure by student team	2-3 students
7. Remarcable recurrences and applications	project exposure by student team	2-3 students
8. Infinite products	project exposure by student team	2-3 students
9. Bernoulli polynomials and numbers	project exposure by student team	2-3 students
10. Riemann Zeta function	project exposure by student team	2-3 students
11. Euler Gamma function	project exposure by student team	2-3 students
12. Proofs from the lists	conversation, exercise and	selection
	didactic proof	
13. Proofs from the lists	conversation, exercise and	selection
	didactic proof	
14. Due examination		

Bibliography

1. Cobzas S.: Analiza matematica (Calcul diferential), Presa Universitara Clujeana, 1997

2. Duren P.: Invitation to Classical Analysis, AMS, 2012

3. Kaczor W.J., Nowak M.T.: Problems in Mathematical Analysis, vol. I si II, AMS, 2001

4. Mercer P.R.: More calculus of a single variable, Springer, 2014

5. Siretchi, Gh.: Calcul diferential si integral, vol. I si II, Editura Stiintifica si Enciclopedica, 1985

6. ***: Pagina cursului Complemente de analiza matematica (notite de curs ale titularului), *http://math.ubbcluj.ro/~sberinde/comp/*

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• This lecture is useful for teacher and research candidates in mathematics, enriching their knowledge in classical mathematical analysis. More specifically, we address new methods and results which might be useful later for a master degree preparation in mathematics or a related field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Knowledge of basic	Written exam	50
	concepts and results,		
	problem solving		
10.5 Seminar/lab activities	Individual project evaluation	Continous observation,	50
		dialogue	
10.6 Minimum performanc	e standards		
➢ Grade 5			

Date	Signature of course coordinator	Signature of seminar coordinator
12 april 2021	lect.dr. Stefan Berinde	lect.dr. Stefan Berinde

Date of approval	Signature of the head of department	
	prof.dr. Octavian Agratini	