SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	discip	oline (en)	Theoretical Mechanics				
(ro)			Mecanica Teoretica				
2.2 Course coordinator				Associate Professor Teodor Grosan			
2.3 Seminar coordinator			Associate Professor Teodor Grosan				
2.4. Year of	2	2.5	4 2.6. Type of E 2.7 Type of DF/Compulsory				DF/Compulsory
study		Semester		evaluation		discipline	
2.8 Code of the MLE0025						•	
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					7
Evaluations					8
Other activities:					-
0.5.5		60			

3.7 Total individual study hours	69
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	• Calculus 2 (Differential and Integral Calculus in R ⁿ); Analytical
	Geometry; Differential Geometry of Curves and Surfaces;

	Differential Equations
4.2. competencies	There are useful logical thinking and mathematical notions and
	 results from the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	 Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

0. Specii	ic c	ompetencies acquired
	•	C2.3 Application of theoretical methods of analysis adequate to the issue data.
ies	•	C4.3 Construction of mathematical model using methods, techniques and appropriate tools.
Professional competencies	•	Knowledge of the basic concepts of Mechanics
Profi comp		Ability to understand and use fundamental results in geometry, differential and integral calculus, and the theory of differential equations to study particular problems of motion and to provide applications.
	•	CT1 Applying rigorous and effective work rules, manifest responsible attitude to science and
		teaching, and creative order to maximize their potential in specific situations, the principles and rules of professional ethics.
Fransversal	•	Ability to apply the studied concepts, to inform themselves, to work independently or in a
Transversal competencio		team in order to carry out studies and to solve complex problems.
Tra		Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of main concepts and results of Mechanics.
7.2 Specific objective of the discipline	Acquiring basic and advanced knowledge in Mechanics.
	Acquiring basic concepts of kinematics of material point and kinematics of rigid body.
	Acquiring basic concepts of dynamics of material point and of systems of material points.
	Understanding fundamental problems and results in rigid body dynamics.
	Ability to apply and use mathematical models to describe and analyze problems of Mechanics.

 Knowledge, understanding and use of various topics in mathematics to study problems of Mechanics.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction. Fundamental notions of	Lectures, modeling, didactical	
Mechanics. Kinematics of material point:	demonstration, conversation.	
Trajectory, motion equations, velocity and	Presentation of alternative	
acceleration of material point. Kinematics of	explanations.	
material point in Cartesian and intrinsic		
coordinates (Frénet's coordinate system).		
2. Curvilinear coordinates. Examples of	Lectures, modeling, didactical	
orthogonal curvilinear coordinates:	demonstration, conversation.	
cylindrical, polar, and spherical coordinates.	Presentation of alternative	
	explanations.	
3. Kinematics of rigid body: Euler's angles.	Lectures, modeling, didactical	
Motion equations. Poisson's formulas.	demonstration, conversation.	
	Presentation of alternative	
	explanations.	
4. The distribution of velocity and	Lectures, modeling, didactical	
acceleration in rigid body. Translational	demonstration, conversation.	
motion of rigid body. Kinematics of rotation	Presentation of alternative	
of rigid body around a fixed axis. Kinematics	explanations.	
of rotation of rigid body around a fixed point.		
5. General motion of free rigid body. Helical	Lectures, modeling, didactical	
motion. Plane motion of rigid body (I): Pure	demonstration, conversation.	
rotation. Instantaneous centre of rotation.	Presentation of alternative	
	explanations.	
6. Plane motion of rigid body (II): Curves	Lectures, modeling, didactical	
described by the instantaneous centre of	demonstration, conversation.	
rotation. Kinematics of relative motion:	Presentation of alternative	
definitions, distribution of velocitis and	explanations.	
accelerations, Coriolis' formulas, Coriolis'		
Theorem.	7 , 11 11 11	
7. Dynamics of material point: Newton's laws of	Lectures, modeling, didactical	
Dynamics. Newton's equation. Dynamics of	demonstration, conversation.	
free material point.	Presentation of alternative	
0 0 14 61	explanations.	
8. General theorems of dynamics of material	Lectures, modeling, didactical	
point.	demonstration, conversation.	
	Presentation of alternative	
	explanations.	
9. Motion under the influence of a central force.	Lectures, modeling, didactical	
Binet's equation. The case when the central	demonstration, conversation.	
force depends only on the distance: $f = f(r)$.	Presentation of alternative	
10 m	explanations.	
10. The universal attraction law. Newton's	Lectures, modeling, didactical	
problem.	demonstration, conversation.	
	Presentation of alternative	

	explanations.
11. Dynamics of material point subject to	Lectures, modeling, didactical
constraints: The motion on a fixed surface, or	demonstration, conversation.
on a fixed curve. Mathematical pendulum.	Presentation of alternative
	explanations.
12. Dynamics of systems of material points.	Lectures, modeling, didactical
General theorems of dynamics of systems of	demonstration, conversation.
material points.	Presentation of alternative
	explanations.
13. General theorems of the motion of systems of	Lectures, modeling, didactical
material points around their mass center.	demonstration, conversation.
Angular momentum and kinetic energy in the	Presentation of alternative
fixed axis rigid body motion. Moment of	explanations.
inertia.	
14. Dynamics of the motion of a rigid body about	Lectures, modeling, didactical
a fixed point. Considerations on the general	demonstration, conversation.
motion of a free rigid body.	Presentation of alternative
	explanations.

Bibliography

- 1. Kohr, M., Special Topics in Mechanics, Cluj University Press, Cluj- Napoca, 2005 (in Romanian)
- 2. Brãdeanu, P., *Theoretical Mechanics*, Vols. 1 and 2, Babeş-Bolyai University Press, Cluj-Napoca, 1988 (in Romanian).
- 3. Iacob, C., Theoretical Mechanics, Editura Didactică și Pedagogică, Bucharest, 1980 (in Romanian)
- 4. Dragoş, L., *Principles of Analytical Mechanics*, Technical Publishing House, Bucharest, 1976 (in Romanian)
- 5. Goldstein, H., Poole, C., Safko, J., *Classical Mechanics*, Reading, MA: Addison-Wessley Publ. Co. (3rd edition), 2014
- 6. Bose, S., Chattoraj, D., *Elementary Analytical Mechanics*, Alpha Science International Ltd. 2000
- 7. Aaron, F.D., *Analytical Mechanics*, BIC ALL Publishing House, Bucharest, 2002 (in Romanian)
- 8. Landau, L.D., Lifshitz, E.M., Mechanics, Elsevier-Butterworth-Heinemann, (3rd edition), 2005
- 9. Russo, R., Classical Problems in Mechanics, Aracne, Roma, 1997

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Kinematics of material point in Cartesian and	Description of arguments and	
orthogonal curvilinear coordinates (cylindrical,	proofs for solving problems.	
shperical, and polar coordinates). Motion in the	Direct answers to students.	
Frénet coordinate system (I).	Homework assignments.	
2. Kinematics of material point in Cartesian and	Description of arguments and	
orthogonal curvilinear coordinates (cylindrical,	proofs for solving problems.	
shperical, and polar coordinates). Motion in the	Direct answers to students.	
Frénet coordinate system (II).	Homework assignments.	
3. Translational motion of rigid body. Kinematics	Description of arguments and	
of rotation of rigid body around a fixed axis.	proofs for solving problems.	
	Direct answers to students.	
	Homework assignments.	

4. Kinematics of rotation of rigid body around a fixed point. Kinematics of free rigid body.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
5. Helical motion. Plane motion of rigid body (I).	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
6. Plane motion of rigid body (II). Kinematics of relative motion of material point.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
7. Dynamics of free material point. Motion of material point in a field of conservative forces.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
8. General theorems of dynamics of material point.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
9. Central forces (I).	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
10. Central forces (II).	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
11. Dynamics of material point subject to constraints. Dynamics of relative motion of material point.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
12. Dynamics of systems of material points. Moment of inertia.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
13. General theorems of dynamics of systems of material points (I).	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.
14. General theorems of dynamics of systems of material points (II). Dynamics of the motion of a rigid body about a fixed point.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.

Bibliography

- 1. Kohr, M., Special Topics in Mechanics, Cluj University Press, Cluj- Napoca, 2005 (in Romanian)
- 2. Turcu, A., Kohr-Ile, M., *Collection of Theoretical Mechanics Problems*, Babeş- Bolyai University Press, Cluj-Napoca, 1993 (in Romanian)
- 3. Brãdeanu, P., Theoretical Mechanics, Vols. 1 and 2, Babeş- Bolyai University Press, Cluj-Napoca, 1988

- 4. Bradeanu, P., Pop, I., Bradeanu D., Technical Publishing House, Bucharest, 1979 (in Romanian)
- 5. Brãdeanu, P., Pop, I., Stan, I., Turcu, A., *Collection of Theoretical Mechanics Problems*, Babeş- Bolyai University Press, Cluj-Napoca, 1976 (in Romanian)
- 6. Aaron, F.D., Analytical Mechanics, BIC ALL Publishing House, Bucharest, 2002 (in Romanian)
- 7. Goldstein, H., Poole, C., Safko, J., *Classical Mechanics*, Reading, MA: Addison-Wessley Publ. Co. (3rd edition), 2014
- 8. Landau, L.D., Lifshitz, E.M., Mechanics, Elsevier-Butterworth-Heinemann, (3rd edition), 2005

Russo, R., Classical Problems in Mechanics, Aracne, Roma, 1997

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the applied mathematics plays an essential role. This discipline is useful in preparing future teachers and researchers in applied mathematics, as well as those who use mathematical models and methods of study in other areas (physics, chemistry, engineering, computer science).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	Knowledge of concepts and basic results	Written exam at the	50%	
		end the semester		
	Ability to justify by proofs theoretical			
	results			
10.5 Seminar/lab	Ability to apply concepts and results	A midterm written	50%	
activities	acquired in the course in mathematical	test.		
	modeling and analysis of problems in			
	Mechanics			
	There are valid the official rules of the			
	faculty concerning the attendance of			
	students to teaching activities			
10.6 Minimum performance standards				
➤ At least grade 5 (from a scale of 1 to 10) at both written exam				

28.04.2021 Associate Professor Associate Professor

Grown Teodor

Teodor Grosan Teodor Grosan

Grown Teodor

Date of approval Signature of the head of department

28.04.2021 Professor Octavian AGRATINI