
1

SYLLABUS

1. Information regarding the programme

1.1 Higher education institution Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Mathematics

1.5 Study cycle Bachelor

1.6 Study programme / Qualification Mathematics and Computer Science (in english)

2. Information regarding the discipline

2.1 Name of the discipline Computer Systems Architecture

2.2 Course coordinator Lect. PhD. Coroiu Adriana Mihaela

2.3 Seminar coordinator Lect. PhD. Coroiu Adriana Mihaela

2.4. Year of

study

2 2.5

Semester

1 2.6. Type of

evaluation

E 2.7 Type of

discipline

Compulsory

3. Total estimated time ((hours/semester of didactic activities)

3.1 Hours per week 4 Of which: 3.2

course

2 3.3 seminar/laboratory 1 sem + 1 lab

3.4 Total hours in

the curriculum

56 Of which: 3.5

course

2

8

3.6 seminar/laboratory 28

Time allotment: hours

Learning using manual, course support,

bibliography, course notes

20

Additional documentation (in libraries, on

electronic platforms, field documentation)

10

Preparation for seminars/labs, homework,

papers, portfolios and essays

20

Tutorship 4

Evaluations 14

Other activities:

3.7 Total individual study hours 32

3.8 Total hours per semester 100

3.9 Number of ECTS credits 4

2

4. Prerequisites (if necessary)

4.1. curriculum -

4.2. competencies -

5. Conditions (if necessary)

5.1. for the course projector

5.2. for the seminar /lab Laboratory with computers

6. Specific competencies acquired

61.

Professional

competencies

C6.1 Identification of basic concepts and models for computer systems and

computer networks.

C6.2 Identification and description of the basic architectures for the organization

and management of systems and networks.

6.2

Transversal

competencies

CT1 Application of organized and efficient work rules, of responsible attitudes

towards the didactic and scientific domain, for the creative exploitation of their

own potential according to the principles and rules of professional ethics

CT3 Use of effective methods and techniques of learning, information, research

and development of the capacity to exploit knowledge, to adapt to the

requirements of a dynamic society and communication in Romanian language

and in a foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective

of the

discipline

Knowledge of the computer architecture models, processor

functioning, computer information representation usage

7.2 Specific objective

of the

discipline

- Understanding by the students of the computer architecture models,

processor functioning, computer information representation usage

- Initiation in assembler language programming, which will assure the

comprehension of the microprocessor architecture and functioning

- Understanding the basic functions of a computer’s architectural

components and its native low-level workflow. Awareness of the

architectural impact on designing and implementing high level

programming languages.

- Understanding the impact of the 80x86 processor architecture on

Windows functioning and limitations. Awareness of the triade

computer architecture – operating systems – programming languages

and their interactions as the basic core of Computer Science.

3

8. Contents

8.1 Course Teaching

methods

Remarks

1. Data representation – part 1

2. Data representation – part 2

3. Computing systems architecture and The 80x86

microprocessor’s architecture

4. Assembly language basic elements: the source line

format, location counter, labels, expressions, accessing

the operands, operators. Temporary non-destructive

conversions and their specific operators.

5. Assembly language basic instructions: transfer

instructions, signed and unsigned arithmetic

operations, bitwise shifting and rotating, logical

bitwise operations.

6. The 80x86 microprocessor’s Eflags register. The

flags role and classifications. Examples of usage and

case studies in conjuction with basic arithmetic

operations.

7. Conversions classification. Signed vs unsigned

conversions instructions. Non destructive operators

vs. destructive instructions conversions in assembly

language. Examples and case studies.

8. The Bus Interface Unit (BIU) of the 80x86

microprocessor: the address registers, segment

registers, machine instructions representation. The

address computation mechanism, addressing modes,

far addresses and near addresses. The offset

specification formula on 32 bits vs. on 16 bits.

9. Directives for defining segments, data definition

directives, the EQU and INCLUDE directives. Data

types and the impact of data type interpretations and

little-endian representation on accessing memory data.

Exposure,

description,

explanation,

examples,

discussion

of case studies

4

10. Overflow analysis. the overflow concept in

mathematics vs. practical memory overflow in a

Computing System. The 80x86 architecture reactions to

an overflow for each of the four basic arithmetic

operations.

11. String instructions. Conditional and unconditional

jump instructions, looping instructions, string parsing

in assembly language with non specific instructions.

Specific strings instructions and their efficiency.

Examples and case studies.

12. Windows Input/Output Function Calls (printf and

scanf) and Text files (fopen, fread, fscanf, fprintf,

fclose) processing operations callable from NASM

assembler

13. Multi-module programming in assembly

language. Import – export mechanisms and shared

resources between separate modules in assembly

language.

14. Review of theoretical aspects and additional

problems: integration of the concepts already

presented: data type, little-endian and directives with

specific instructions for signed and unsigned

representations.

Bibliography

1. Al. Vancea, F. Boian, D. Bufnea, A. Andreica, A. Darabant, A. Navroschi – Arhitectura

calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2014.

2. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau – Arhitectura

calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.

3. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea – Programarea în limbaj

de asamblare 80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.

4. Randal Hyde – The Art of Assembly Programming, No Starch Press, 2003.

(http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/inde

x.html)

5. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de

Matematica si

Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de

Formare Continua si Invatamânt la Distanta, Cluj, 2002

6. Irvine, K.R., 2015. Assembly language for x86 processors.

5

7. Kusswurm, D., 2014. Modern X86 Assembly Language Programming. Springer.

8. Carter, P.A., 2004. PC Assembly Language. Github:

(http://pacman128.github.io/static/pcasm-book.pdf)

9. Cavanagh, J., 2013. X86 Assembly Language and C Fundamentals. CRC Press.

10. Guide, P., 2011. Intel® 64 and ia-32 architectures software developer’s manual. Volume

3B: System programming Guide, Part, 2, p.11.

(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pd

f)

8.2 Seminar/Laboratory Teaching

methods

Remarks

Seminars:

S1: Introduction to the IA-32

assembly language. Converting

numbers between numbering

bases 2, 10, 16. Representation of

integer numbers in the

computer’s memory.

S2: Signed and unsigned

instructions. Arithmetic

instructions (addition,

substraction, multiplications and

divisions). Signed and unsigned

conversions.

S3: Little-endian representation of

data in memory. Conditional and

unconditional jumps. String

operations.

S4. Bitwise instructions (Bitwise

logical operations, Shift and

rotate operations)

S5: Specific string instructions.

Complex string problems.

S6: Library functions call (printf,

scanf, fread, fscanf, fprintf, fclose)

Exposure;

Description;

Explanation;

Examples;

Discussion

of case studies;

Practical projects.

Seminar is structured as 2

hour classes every second

week

http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf
http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf

6

S7: Multi-module programming

in assembly language.

Laboratories

L1: Converting between different

number bases. Bit. Sign bit.

Complementary code.

Representing signed integers.

Tools for laboratories. Structure of

a NASM program in assembly.

L2: Arithmetic expressions based

on arithmetic instructions

(additions, substractions,

multiplications, divisions, little-

endian, signed and unsigned

conversions, declaring

variables/constants)

L3: Complex arithmetic

expressions and bitwise

operations.

L4: Specific string operations

(Instructions for comparisons,

conditional jumps and repetitive

loops and Instructions working

on strings of bytes, words,

doublewords and quadwords).

L5: Function calls: Function

libraries, Using external

functions. Call conventions,

Calling a system function.

Standard msvcrt functions

L6: Text file operations (open,

write, read, close).

Laboratory is structured as 2 hour

classes every second week.

Laboratory problems assigned at

a lab, have to be presented in the

next lab.

7

L7: Multi-module programming

in assembly language.

Bibliography

1. Al. Vancea, F. Boian, D. Bufnea, A. Andreica, A. Darabant, A. Navroschi – Arhitectura

calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2014.

2. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau – Arhitectura

calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.

3. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea – Programarea în limbaj

de asamblare 80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.

4. Randal Hyde – The Art of Assembly Programming, No Starch Press, 2003.

(http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/inde

x.html)

5. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de

Matematica si

Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de

Formare Continua si Invatamânt la Distanta, Cluj, 2002

6. Irvine, K.R., 2015. Assembly language for x86 processors.

7. Kusswurm, D., 2014. Modern X86 Assembly Language Programming. Springer.

8. Carter, P.A., 2004. PC Assembly Language. Github:

(http://pacman128.github.io/static/pcasm-book.pdf)

9. Cavanagh, J., 2013. X86 Assembly Language and C Fundamentals. CRC Press.

10. Guide, P., 2011. Intel® 64 and ia-32 architectures software developer’s manual. Volume

3B: System programming Guide, Part, 2, p.11.

(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pd

f)

9. Corroborating the content of the discipline with the expectations of the epistemic

community, professional associations and representative employers within the field of the

program

The course exists in the studying program of all major universities in Romania and abroad;

 The content of the course is considered by the software companies as important for

average programming skills

10. Evaluation

8

Type of

activity
10.1 Evaluation criteria

10.2 Evaluation

methods

10.3 Share in the

grade (%)

10.4 Course

Testing the basic principles

of the domain and their interactions
Written exam 45 %

Verifying the understanding of the

assembly language basic operations and

mechanisms

Moodle

midterm online

multiple choice

test

15 %

Application of the 32 bits assembly

language principles for problem solving;

Average grade

received for the

laboratory work

15 %

10.5

Lab/Seminar

activities

Developing and implementing an

assembly language code solution for a

given problem

Practical exam 15 %

Evaluating the students activities during

the seminaries
Seminar activity 10 %

10.6

Minimum

performance

standards

- For participating at the written exam, a student must have at least 5 seminar

attendances and 6 laboratory attendances.

- Knowledge of the basic concepts. Each student has to prove that he/she has

acquired an acceptable level of knowledge and understanding of the domain,

that he/she is capable of expressing the acquired knowledge in a coherent form,

that he/she has the ability of using this knowledge for problem solving.

- For successfully passing the examination, a student must have at least 5 for the

laboratory average, for the written exam, for the practical exam, and minimum

5 as a final grade.

Date Signature of course coordinator Signature of seminar coordinator

14.04.2020 Lect. PhD Adriana Mihaela COROIU Lect. PhD. Adriana Mihaela COROIU

Date of approval Signature of the head of department

 Prof. PhD. Anca ANDREICA

What Are Assemblers and Linkers?
An

9

assembler

is a utility program that converts source

code programs from assembly language into machine language. A

linker

is a utility program that

combines individual files created by an assembler into a single executable program. A related

utility, called a

debugger

, lets you to step through a program while it’s running and examine registers

and memory.

Assembly language programmers deal with data at the physical level, so they must be adept at examining

memory and registers. Often, binary numbers are used to describe the contents of computer

memory; at other times, decimal and hexadecimal numbers are used. You must develop a certain fluency

with number formats, so you can quickly translate numbers from one format to another.

Each numbering format, or system, has a base, or maximum number of symbols that can be

assigned to a single digit. Table 1-2 shows the possible digits for the numbering systems used

most commonly in hardware and software manuals. In the last row of the table, hexadecimal

numbers use the digits 0 through 9 and continue with the letters A through F to represent decimal

values 10 through 15. It is quite common to use hexadecimal numbers when showing the

contents of computer memory and machine-level instructions.

1.3.1 Binary Integers
A computer stores instructions and data in memory as collections of electronic charges. Representing

these entities with numbers requires a system geared to the concepts of on and off or true and false.

Binary numbers are base 2 numbers, in which each binary digit (called a bit) is either 0 or 1. Bits are

numbered sequentially starting at zero on the right side and increasing toward the left. The bit on the

left is called the most significant bit (MSB), and the bit on the right is the least significant bit (LSB).

The MSB and LSB bit numbers of a 16-bit binary number are shown in the following figure:

