SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor of Science
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the di	iscip	oline	То	pology			
2.2 Course coordin	nato	r	Co	onf. dr. Adriana Nicolae			
2.3 Seminar coord	inat	or	Conf. dr. Adriana Nicolae				
2.4. Year of study	2	2.5 Semester	3	2.6. Type of evaluation	VP	2.7 Type of discipline	Optional

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course supp	ort, bi	ibliography, course not	es		30
Additional documentation (in librari	es, on	electronic platforms, f	ïeld c	locumentation)	14
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					10
Evaluations					20
Other activities					-
3.7 Total individual study hours 94					
3.8 Total hours per semester 150					
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	• Calculus 1, 2
4.2. competencies	Analytic thinking

5. Conditions (if necessary)

5.1. for the course	• Lecture hall equipped with blackboard
5.2. for the seminar /lab activities	Classroom equipped with blackboard

6. Specific competencies acquired

Professional competencies	 C1.1 Identification of notions, description of theories and use of specific language. C1.4 Recognition of main classes/types of mathematical problems and of appropriate techniques for solving them. C5.2 Use of mathematical arguments to prove mathematical results.
Transversal competencies	• CT1 Application of efficient and rigorous working rules by adopting responsible attitudes towards the scientific and didactic fields for the development of the own creative potential respecting professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To acquire fundamental knowledge about general topology and to apply it in solving problems.
7.2 Specific objective of the discipline	• To acquire knowledge about elements of general topology (e.g., metric spaces, topological spaces, continuity, separation axioms, connectedness, compactness) and about important results in topology (e.g., the Urysohn Lemma, the Tietze Extension Theorem, the Arzelà-Ascoli Theorem, the Stone-Weierstrass Theorem).

8. Content

8.1 Co	urse	Teaching methods	Remarks
1.	Introduction: fundamental problems in topology.	Lecture, discussion, didactical	
	Metric spaces, examples	demonstration, problematisation	
2.	Open sets in metric spaces. Topological spaces,	Lecture, discussion, didactical	
	examples. Neighborhoods, convergent sequences	demonstration, problematisation	
3.	Interior, closure, and boundary. Bases, subbases	Lecture, discussion, didactical	
	of topologies	demonstration, problematisation	
4.	Generated topology, subspace, product space,	Lecture, discussion, didactical	
	quotient space, examples	demonstration, problematisation	
5.	Countability properties. Continuous functions (I)	Lecture, discussion, didactical	
		demonstration, problematisation	
6.	Continuous functions (II). Separation axioms	Lecture, discussion, didactical	
		demonstration, problematisation	
7.	The Urysohn Lemma and the Tietze Extension	Lecture, discussion, didactical	
	Theorem	demonstration, problematisation	
8.	Uniformly continuous, Lipschitz, and Hölder	Lecture, discussion, didactical	
	functions	demonstration, problematisation	
9.	Complete metric spaces	Lecture, discussion, didactical	
		demonstration, problematisation	
10	. Connectedness	Lecture, discussion, didactical	
		demonstration, problematisation	
11	. Compactness	Lecture, discussion, didactical	
		demonstration, problematisation	
12	Compactness in metric spaces	Lecture, discussion, didactical	
		demonstration, problematisation	
13	Spaces of continuous functions. The Arzelà -	Lecture, discussion, didactical	
	Ascoli Theorem	demonstration, problematisation	
14	. The Stone-Weierstrass Theorem	Lecture, discussion, didactical	
		demonstration, problematisation	

Bibliography

1. V. Anisiu, Topologie și teoria măsurii, Universitatea "Babeș-Bolyai", Cluj-Napoca, 1993.

2. R. Engelking, General topology, 2nd ed., Heldermann Verlag, Berlin, 1989.

3. G. B. Folland, Real analysis. Modern techniques and their applications, 2nd ed., John Wiley & Sons, Inc., New York, 1999.

4. J. L. Kelley, General topology. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Springer, New York-Berlin, 1975.

5. J. R. Munkres, Topology, 2nd ed., Prentice Hall, Inc., Upper Saddle River, NJ, 2000.

6. B. Simon, A comprehensive course in analysis. Part 1: Real analysis, American Mathematical Society, Providence, RI, 2015.

7. S. Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.

8.2 Seminar	Teaching methods	Remarks
1. Introduction: fundamental problems in topology.	Discussion, problem solving,	
Metric spaces, examples	didactical demonstration	
2. Open sets in metric spaces. Topological spaces,	Discussion, problem solving,	
examples. Neighborhoods, convergent sequences	didactical demonstration	
3. Interior, closure, and boundary. Bases, subbases	Discussion, problem solving,	
of topologies	didactical demonstration	
4. Generated topology, subspace, product space,	Discussion, problem solving,	
quotient space, examples	didactical demonstration	
5. Countability properties. Continuous functions (I)	Discussion, problem solving,	
	didactical demonstration	
6. Continuous functions (II). Separation axioms	Discussion, problem solving,	
	didactical demonstration.	
7. The Urysohn Lemma and the Tietze Extension	Discussion, problem solving,	
Theorem	didactical demonstration	
8. Uniformly continuous, Lipschitz, and Hölder	Discussion, problem solving,	
functions	didactical demonstration	
9. Complete metric spaces	Discussion, problem solving,	
	didactical demonstration	
10. Connectedness	Discussion, problem solving,	
	didactical demonstration	
11. Compactness	Discussion, problem solving,	
	didactical demonstration	
12. Compactness in metric spaces	Discussion, problem solving,	
	didactical demonstration	
13. Spaces of continuous functions. The Arzelà -	Discussion, problem solving,	
Ascoli Theorem	didactical demonstration	
14. The Stone-Weierstrass Theorem	Discussion, problem solving,	
	didactical demonstration	

Bibliography (in addition to the books mentioned before which also contain exercises)1. A. V. Arkhangel'skiĭ, V. I. Ponomarev, Fundamentals of general topology: Problems and exercises, D. Reidel Publishing Co., Dordrecht, 1984.

2. O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. Kharlamov, Elementary topology. Problem textbook, American Mathematical Society, Providence, RI, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards. This discipline is useful in preparing future teachers and researchers in mathematics, but is also addressed to those who use various modern mathematical methods and techniques in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade
10.4 Course	- Knowledge of basic	- Homework assignments,	- Homework
	notions, examples and	test	assignments: 30%
	results	- Lecture and seminar	- Test: 70%
	- Ability to prove	activity	- Lecture and seminar
	theoretical results		activity: bonus max.
10.5 Seminar/lab	- Problem solving using		3%
activities	concepts and results		

	acquired during the lecture classes - Attendance according to the rules of the faculty			
10.6 Minimum performance standards				
Both the grade at the test and the final average should be at least 5.				

Date	Signature of course coordinator	Signature of seminar coordinator
20.04.2021	Conf. dr. Adriana Nicolae	Conf. dr. Adriana Nicolae

Date of approval 28.04.2021

Signature of the head of department Prof. dr. Octavian Agratini