SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education institution	Babeş-Bolyai University, Cluj-Napoca
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Licence
1.6 Study programme / Qualification	Mathematics and Computer Science

2. Information regarding the discipline

2.1 Name of the di	scip	line	ne				
(en)		Convex Analysis					
(ro)			Analiză convexă				
2.2 Course coordinator			Trif Tiberiu-Vasile				
2.3 Seminar coordinator Trif Tiberiu-Vasile							
2.4 Year of study	2	2.5 Semester	3	2.6. Type of VP 2.7 Type of optional			optional
			evaluation discipline				
2.8 Code of the MLR0072					•	•	
discipline	ipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
					urs
Learning using manual, course support, bibliography, course notes					25
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					15
Evaluation					20
Other activities:					

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1 curriculum	Calculus 1 (Calculus in R)
	 Calculus 2 (Calculus in R^n)
4.2 competencies	Logical thinking abilities, problematisation

5. Conditions (if necessary)

5.1 For the course	 Classroom with adequate infrastrusture
5.2 For the seminar/lab activities	Classroom with adequate infrastrusture

6. Specific competencies aquired

	it competences udan ea
Professional competencies	 C1.4 Recognizing the main classes /types of mathematical problems and selecting the appropriate methods and techniques for their solving C2.1 Identifying the basic notions used to describe some processes and phenomena
Transversal competencies	CT1 Application of efficient and rigorous working rules, manifest responsible attitudes towards the scientific and didactic fields, respecting the professional and ethical principles

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Getting to know some basic notions and results concerning convex functions Getting to know some basic notions and results from convex analysis
7.2 Specific objectives of the discipline	 Presenting various characterization theorems of convex functions; based on them the student will be able to establish wether a given function is convex or not Getting to know some specific fundamental properties of convex functions Aplying the general inequalities specific to convex functions in proving other concrete inequalities Solving some concrete convex optimization problems

8. Content

8.1 Course	Teaching methods	Remarks
1. Convex functions of a real variable: the modern definition	Lecture, discussion,	[4], pp. 93 – 102
of convexity, characterizations of convex real valued	proof,	[9], pp. 3 – 7
functions of a real variable and their regularity properties	problematisation	
(existence of side derivatives, continuity, Lipschitz		
continuity).		
2. Convex functions of a real variable: characterization by	Lecture, discussion,	[4], pp. 102 – 103
means of support line, the Hermite-Hadamard inequality,	proof,	pp. 107 – 108
characterizations of convexity by means of the first order side	problematisation	pp. 136 – 139
derivatives and by means of the second derivative, connection		[9], pp. 11 – 12
with harmonic functions.		
3. Means and their inequalities: weighted quasiarithmetic	Lecture, discussion,	[4], pp. 115 – 122
means and their comparison, weighted Hölder means and their	proof,	
comparison, Rado-Popoviciu type inequalities.	problematisation	
4. Generalizations of convex functions: Jensen-convex	Lecture, discussion,	[4], pp. 124 – 132
functions, log-convex functions and multiplicatively-convex	proof,	[9], pp. 218 – 223
functions.	problematisation	
5. Convex functions on vector spaces: definition,	Lecture, discussion,	[4], pp. 72 – 79
characterizations, examples (affine functions, sublinear	proof,	
functions, indicator functions, quadratic forms, support	problematisation	
functions).		
6+7. Continuity of convex functions on normed spaces:	Lecture, discussion,	[4], pp. 24 – 29

semicontinuous functions, characterization of semicontinuity	proof,	pp. 147 – 153
by means of sequences, the lower and the upper limit of a	problematisation	[7], pp. 119 – 123
	problematisation	
function at a point and their relationship with semicontinuity,		[9], pp. 91 – 94
the connection between continuity, Lipschitz-continuity and		
local boundedness in the case of convex functions defined on		
normed spaces, continuity of convex functions on finite		
dimensional normed spaces, continuity vs. Lower		
semicontinuity for convex functions defined on Banach		
spaces.		
8. Directional differentiability and algebraic	Lecture, discussion,	[4], pp. 154 – 159
subdifferentiability of convex functions defined on vector	proof,	
spaces: side directional derivatives and their properties,	problematisation	
algebraic subgradients and their characterization, algebraic		
subdifferentiability of convex functions.		
9. Subdifferentiability of convex functions on normed spaces:	Lecture, discussion,	[4], pp. 159 – 163
the definition of subgradients and of the subdifferential,	proof,	
subdifferentiability vs. algebraic subdifferentiability vs.	problematisation	
semicontinuity, the relative interior of a set,		
subdifferentiability of convex functions at relatively interior		
points to the effective domain.		
10. Differentiable convex functions of several variables:	Lecture, discussion,	[4], pp. 163 – 174
characterization of convexity for differentiable and twice	proof,	[7], pp. 135 – 145
differentiable functions of <i>n</i> real variables.	problematisation	[9], pp. 97 – 103
11. Convex optimization problems: feasible points, optimal	Lecture, discussion,	[1], pp. 43 – 45
solutions, Lagrange's function, necessary and sufficient	proof,	[4], pp. 193 – 197
optimality conditions.	problematisation	[7], pp. 145 – 152
		[9], pp. 171 – 176
12+13. The Fenchel conjugate and the Fenchel biconjugate:	Lecture, discussion,	[1], pp. 49 – 63
the Fenchel-Young inequality, the Fenchel duality theorem,	proof,	pp. 76 – 87
closed convex functions and their characterizations,	problematisation	[4], pp. 198 – 208
calculation of conjugates and of biconjugates of certain		
concrete functions.		
14. Checking the homeworks, dicussing the midterm test	Discussion	
papers, establishing the final grades.		

Bibliography

- 1. BORWEIN J. M., LEWIS A. S.: Convex Analysis and Nonlinear Optimization. Theory and Examples. CMS Books in Mathematics, Springer-Verlag, 2000.
- 2. BRECKNER B. E., POPOVICI N.: Convexity and Optimization. An Introduction. Editura Fundației pentru Studii Europene, Cluj-Napoca, 2006.
- 3. BRECKNER W. W.: Introducere in teoria problemelor de optimizare convexa cu restrictii. Editura Dacia, Cluj, 1974.
- 4. BRECKNER W. W., TRIF T.: Convex Functions and Related Functional Equations. Selected Topics. Cluj University Press, Cluj-Napoca, 2008.
- 5. HIRIART-URRUTY J. B., LEMARECHAL C.: Convex Analysis and Minimization Algorithms. Springer-Verlag, 1993.
- 6. KUCZMA M.: An Introduction to the Theory of Functional Equations and Inequalities. Panstwowe Wydawnictwo Naukowe, Warszawa-Krakow-Katowice, 1985.
- 7. NICULESCU C. P., PERSSON L.-E.: Convex Functions and Their Applications. A Contemporary Approach. Springer-Verlag, New York, 2006.
- 8. PRECUPANU T.: Spatii liniare topologice si elemente de analiza convexa. Editura Academiei Romane, Bucuresti, 1992.
- 9. ROBERTS A. W., VARBERG D. E.: Convex Functions. Academic Press, 1973.

10. ROCKAFELLAR R. T.: Convex Analysis. Princeton University Press, 1970.					
8.2 Seminar / laboratory	Teaching methods	Remarks			
1+2. Study of the convexity for certain concrete functions,	Discussion,	[2], pp. 104 – 107			
applications of Jensen's inequality in proving other	problematisation	[4], pp. 189 – 191			
inequalities, the AM-GM inequality as a corollary of					
convexity.					
3+4. Applications of the Hermite-Hadamard inequality	Discussion,	[2], pp. 137 – 139			
(inequalities between the geometric mean, the logarithmic	problematisation	[3], pp. 73 – 74			
mean and the arithmetic mean, Stirling's formula),					
characterizatio of convex functions by means of the Hermite-					
Hadamard inequality.					
5+6. Ky Fan type inequalities, the Hardy-Littlewood-Pólya	Discussion,	[2], pp. 121 – 122			
majorization theorem and its applications (Popoviciu's and	problematisation	pp. 109 – 115			
Petrović's inequalities).					
7+8. Log-convexity of the gamma function, the Bohr-	Discussion,	[2], pp. 126 – 129			
Mollerup theorem, multiplicative convexity of the gamma	problematisation	[3], pp. 68 – 71			
function.					
9+10. Jensen-convexity vs convexity on normed spaces,	Discussion,	[4], pp. 211 – 216			
Bernstein-Doetsch type theorems.	problematisation				
11+12. Calculation of the subgradients for certain concrete	Discussion,	[2], pp. 172 – 176			
functions on normed spaces, study of the convexity of certian	problematisation				
functions of <i>n</i> real variables.					
13+14. Solving some convex optimization problems.	Discussion,	[1], pp. 43 – 45			
	problematisation	[2], p. 197			

Bibliography

- 1. BORWEIN J. M., LEWIS A. S.: Convex Analysis and Nonlinear Optimization. Theory and Examples. CMS Books in Mathematics, Springer-Verlag, 2000.
- 2. BRECKNER W. W., TRIF T.: Convex Functions and Related Functional Equations. Selected Topics. Cluj University Press, Cluj-Napoca, 2008.
- 3. NICULESCU C. P., PERSSON L.-E.: Convex Functions and Their Applications. A Contemporary Approach. Springer-Verlag, New York, 2006.
- 4. ROBERTS A. W., VARBERG D. E.: Convex Functions. Academic Press, 1973.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the programme

- Convex functions are useful tools, helping the future math teacher in proving inequalities that occur in elementary mathematics
- Convex optimization knowledge will be useful to the future graduate who will work in a software company

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in grade		
10.4 Course	 knowledge of notions and basic results applying the basic theoretical results to solving concrete 	Three test papers during the semester	75%		
10.5 Seminar/lab	- solving concrete problems with the help of theoretical results from the course	Solving some problems during the semester	25%		
10.6 Minimum performance standards					
Active participation in course and seminar activities					

Date	Signature of course coordinate	or Signature of seminar coordinator
28.4.2021		
Date of approval	S	ignature of the head of departament