SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	MI	LE0070 Matematical Logic and Set Theory				
2.2 Course coor	din	ator		prof. dr. Andrei Marcus				
2.3 Seminar coordinator prof. dr. Andrei Marcus								
2.4. Year of	1	2.5	1	2.6. Type ofE2.7 Type ofCompulsory				
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

2.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
3.1 Hours per week	4	Of which. 5.2 course	2		2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				30	
Additional documentation (in libraries, on electronic platforms, field documentation)				15	
Preparation for seminars/labs, homew	vork, j	papers, portfolios and e	ssays		30
Tutorship					9
Evaluations					10
Other activities:					-
3.7 Total individual study hours		94			•

5.7 Total marviadal study nouis	77
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	- Profound knowledge of high school math, especially of the
	following topics:
	- elements of propozitional and predicate calculus
	- operations with sets
	- functions;
	- injectivity, surjectivity, bijectivity
	- number sets
	- divizibility in Z; primes;
	- modular arthmetic
	- counting arguments

4.2. competencies	- ability to perform symbolic calculations ability to operate with
	abstract concepts
	- ability to do logical deductions
	- ability to solve math problems based on aquired notions

5. Conditions (if necessary)

5.1. for the course	blackboard, projector
5.2. for the seminar /lab	blackboard
activities	

6. Specific competencies acquired

Professional competencies	 ability to perform symbolic calculations in various structures (oredered sets, lattices etc) ability to operate with abstract concepts ability to complex logical deductions ability to solve mathematics problems bases on aquired notions 	
Transversal competencies	 abstract reasoning applying mathematics in real life ability to solve problems 	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Basic knowledge on First Order Logic, Set Theory, and Arithmetic. Ability to solve difficult problems
7.2 Specific objective of the discipline	 students will operate with fundamental concepts of logic, set theory and number theory students will aquire knowlegde first order predicates, relations, equivalence, cardinals and ordinals, number systems, divisibility, congruences, combinatorics. students solve problems, theoretical and practical, using instruments of modern mathematics.

8. Content

8.1 Course	Teaching methods	Remarks
Week 1. Propositional Logic. Formulas, truth values,	Explanation, dialogue,	
tautologies.	examples, proofs	
Week 2. Normal forms in propositional logic. First	Explanation, dialogue,	
order Logic. Predicates, quantifiers.	examples, proofs	
Week 3. Methods of mathematical proof.	Explanation, dialogue,	
Sets and operations with sets.	examples, proofs	
Week 4. Binary relations. Functions. Injective,	Explanation, dialogue,	
surjective, bijective functions.	examples, proofs	
Week 5. Equivalence relations and partitions, factor	Explanation, dialogue,	
sets, kernel of a function.	examples, proofs	
Week 6. Factorization of functions	Explanation, dialogue,	

	examples, proofs
Week 7. Ordered sets, lattices.	Explanation, dialogue,
	examples, proofs
Week 8. Boole algebras and Boole rings.	Explanation, dialogue,
	examples, proofs
Week 9. Axiomatic number theory. The Frege-Russell	Explanation, dialogue,
constructions and the Peano axioms	examples, proofs
Week 10. Construction of integers and rationals.	Explanation, dialogue,
	examples, proofs
Week 11. Cardinal numbers. Operations with cardinal	Explanation, dialogue,
numbers.	examples, proofs
Week 12. Ordering cardinal numbers. Finite,	Explanation, dialogue,
countable, infinite sets.	examples, proofs
Week 13. Elements of Combinatorics. Counting	Explanation, dialogue,
arguments.	examples, proofs
Week 14. Ordinal Numbers.	Explanation, dialogue,
	examples, proofs
Dibliggraphy	

Bibliography

[1] Marcus, A.: Logică și teoria mulțimilor, web notes 2015.

[2] Breaz, S.; Covaci, R.: *Elemente de logica, teoria multimilor si aritmetica*, Editura Fundatiei pentru Studii Europene, Cluj-Napoca, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
Week 1. Propositional Logic. Formulas, truth values,	Explanation, dialogue,	
tautologies.	examples, proofs	
Week 2. Normal forms in propositional logic. First	Explanation, dialogue,	
order Logic. Predicates, quantifiers.	examples, proofs	
Week 3. Methods of mathematical proof.	Explanation, dialogue,	
Sets and operations with sets.	examples, proofs	
Week 4. Binary relations. Functions. Injective,	Explanation, dialogue,	
surjective, bijective functions.	examples, proofs	
Week 5. Equivalence relations and partitions, factor	Explanation, dialogue,	
sets, kernel of a function.	examples, proofs	
Week 6. Factorization of functions	Explanation, dialogue,	
	examples, proofs	
Week 7. Ordered sets, lattices.	Explanation, dialogue,	
	examples, proofs	
Week 8. Boole algebras and Boole rings.	Explanation, dialogue,	
	examples, proofs	
Week 9. Axiomatic number theory. The Frege-Russell	Explanation, dialogue,	
constructions and the Peano axioms	examples, proofs	
Week 10. Construction of integers and rationals.	Explanation, dialogue,	
	examples, proofs	
Week 11. Cardinal numbers. Operations with cardinal	Explanation, dialogue,	
numbers.	examples, proofs	
Week 12. Ordering cardinal numbers. Finite,	Explanation, dialogue,	
countable, infinite sets.	examples, proofs	
Week 13. Elements of Combinatorics. Counting	Explanation, dialogue,	
arguments.	examples, proofs	
Week 14. Ordinal Numbers.	Explanation, dialogue,	
	examples, proofs	

- 1. Epp, S.: Discrete Mathematics with Applications. 4th ed. Brooks/Cole, Boston, 2011.
- 2. Krantz, S. G.: Discrete Mathematics Demystified. McGraw-Hill, New York, 2009.
- 3. Levy, A.: Basic Set Theory. Dover Publications, New York, 1979.
- 4. Lidl, R., Pilz, G.: Applied Abstract Algebra. Springer-Verlag, Berlin, 1998.

5. Ross, K. A., Wright Ch., Discrete Mathematics. Pearson Education, New Jersey, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Such a course (often called Discrete Mathematics) exists in the curricula of all major universities in Romania and abroad;
- Mathematical Logic and Number Theory are fundamental topics and have multiple applications in other branches of mathematics, as well as in Computer Science and in Philosophy.

10. Evaluation

		grade (%)
 know the basic principles of the field; apply the new concepts	- Two written tests	80%
- problem solving	- homeworks	20%
10.6 Minimum performance standards to aguire minimum 5 (out of 10) points to pass the exam		
	of the field; - apply the new concepts - problem solving ee standards	of the field; - apply the new concepts - problem solving - homeworks

Date

Signature of course coordinator

Signature of seminar coordinator

14.04.2021

Prof.dr. Andrei Mărcuș

Prof.dr. Andrei Mărcuș

Date of approval

Signature of the head of department

.....

Prof. dr. Octavian Agratini