SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
7 1 0	Auvanceu Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis		Geometric function theory in several complex variables (Teoria geometrică a funcțiilor de mai multe variabile complexe)					
2.2 Course coor	2.2 Course coordinator Professor PhD Mirela KOHR							
2.3 Seminar coordinator				Professor PhD Mirela KOHR				
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	DS/Optional	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bib	oliography, course note	S		45
Additional documentation (in libraries, on electronic platforms, field documentation)					45
Preparation for seminars/labs, homework, papers, portfolios and essays					45
Tutorship					34
Evaluations					20
Other activities:					-
3.7 Total individual study hours		189			

4. Prerequisites (if necessary)

3.8 Total hours per semester

3.9 Number of ECTS credits

	,
4.1. curriculum	 Complex analysis; Complex analysis in one and higher
	dimensions; Real analysis; Partial differential equations
4.2. competencies	The are useful logical thinking and mathematical notions and
	results from the above mentioned fields

225

9

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

			I
nal	cies	•	Ability to understand and manipulate concepts, individual results and advanced mathematical theories.
Professional	competencies	•	Ability to use scientific language and to write scientific reports and papers.
	Ø	•	Ability to inform themselves, to work independently or in a team in order to carry out studies and to solve complex problems.
Transversal	competencies	•	Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics, Applied Mathematics, or in other fields that use concepts of complex analysis.
Tran	comp	•	Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of main concepts and results of geometric function theory of several complex variables. Knowledge, understanding and use of methods of complex analysis in one or higher dimensions in the study of special problems in pure and applied mathematics. Ability to use and apply concepts and fundamental results of advanced mathematics in the study of specific problems of function theory in Cⁿ.
7.2 Specific objective of the discipline	 Acquiring basic and advanced knowledge in geometric function theory in Cⁿ. Understanding of main concepts and results in the theory of holomorphic mappings on the unit ball in Cⁿ. Knowledge, understanding and use of advanced topics in mathematics in the study of special problems in several complex variables. Ability student involvement in scientific research.

8. Content

8.1 Course	Teaching methods	Remarks
1. The Carathéodory family <i>M</i> of holomorphic	Lectures, modeling,	
mappings in several complex variables. Growth	didactical demonstration,	
and distortion results, coefficient bounds.	conversation. Presentation	
Compactness of the family M .	of alternative explanations.	
2. Starlike mappings on the unit ball in \mathbb{C}^n . Necessary	Lectures, modeling,	
and sufficient conditions for starlikeness. Growth	didactical demonstration,	
and distortion results and coefficient bounds.	conversation. Presentation	
	of alternative explanations.	
3. Convex mappings on the unit ball in \mathbb{C}^n . Necessary	Lectures, modeling,	
and sufficient conditions for convexity on the	didactical demonstration,	
Euclidean unit ball and the unit polydisc in \mathbb{C}^n .	conversation. Presentation	
	of alternative explanations.	

4		T	
4.		Lectures, modeling,	
	convex mappings on the unit ball in \mathbb{C}^n .	didactical demonstration,	
		conversation. Presentation	
		of alternative explanations.	
5.	Loewner chains and transition mappings (evolution	Lectures, modeling,	
	families) in \mathbb{C}^n .	didactical demonstration,	
		conversation. Presentation	
		of alternative explanations.	
6.	Loewner chains, Herglotz vector fields and the	Lectures, modeling,	
	generalized Loewner differential equation in \mathbb{C}^n .	didactical demonstration,	
		conversation. Presentation	
		of alternative explanations.	
7	Kernel convergence and biholomorphic	Lectures, modeling,	
/ .	mappings on the unit ball in \mathbb{C}^n . Applications	didactical demonstration,	
	** •	conversation. Presentation	
	in the theory of Loewner chains.	of alternative explanations.	
8.	The solutions of the generalized Loewner	Lectures, modeling,	
0.	differential equation in \mathbb{C}^n .	didactical demonstration,	
	differential equation in C.	conversation. Presentation	
0	T C 1 C (CD) C1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of alternative explanations.	
9.	The family S ⁰ (B ⁿ) of biholomorphic mappings with	Lectures, modeling,	
	parametric representation on the unit ball in \mathbb{C}^n .	didactical demonstration,	
	Characterizations in terms of Loewner chains.	conversation. Presentation	
	Compactness of the family $S^0(B^n)$. The Runge	of alternative explanations.	
	property. Open problems.		
10.	Extreme points and support points associated with	Lectures, modeling,	
	the family $S^0(B^n)$. Approximation properties by	didactical demonstration,	
	automorphisms of the space C ⁿ . Open problems	conversation. Presentation	
	and conjectures.	of alternative explanations.	
11.	Univalence criteria on the unit ball in C ⁿ via	Lectures, modeling,	
	the theory of Loewner chains. Parametric	didactical demonstration,	
	representation and asymptotic starlikeness in	conversation. Presentation	
	higher dimensions.	of alternative explanations.	
12	Extension operators that preserve analytic and	Lectures, modeling,	
12.	•	didactical demonstration,	
	geometric properties (starlikeness, convexity,	conversation. Presentation	
	Loewner chains, parametric representation).		
	Open problems, conjectures, and research	of alternative explanations.	
	directions.		
D'1 1'	1		

Bibliography

- 1. I. Graham, G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.
- 2. G. Kohr, *Basic Topics in Holomorphic Functions of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 2003.
- 3. G. Kohr, Geometric Function Theory in Several Complex Variables, Lecture notes, 2020.
- 4. P. Duren, I. Graham, H. Hamada, G. Kohr, *Solutions for the generalized Loewner differential equation in several complex variables*, Mathematische Annalen, **347** (2010), 411-435.
- 5. I. Graham, H. Hamada, G. Kohr, M. Kohr, *Extremal properties associated with univalent subordination chains in* Cⁿ, Mathematische Annalen, **359** (2014), 61-99.
- 6. S. Gong, Convex and Starlike Mappings in Several Complex Variables, Kluwer Acad. Publ., Dordrecht, 1998.
- 7. P. Duren, *Univalent Functions*, Springer-Verlag, New York, 1983.
- 8. M. Elin, S. Reich. D. Shoikhet, *Numerical Range of Holomorphic Mappings and Applications*, Birkhäuser, Springer, Cham, 2019.
- 9. S.G. Krantz, Function Theory of Several Complex Variables, Reprint of the 1992 Edition, AMS Chelsea

Publishing, Providence, Rhode Island, 2001.

- 10. Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- 11. T. Poreda, *On generalized differential equations in Banach spaces*, Dissertationes Mathematicae, **310** (1991), 1-50.
- 12. M. Range, *Holomorphic Functions and Integral Representations in Several Complex Variables* Springer-Verlag, New York, 1986.
- 13. W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, New York, 1980.

8.2 Seminar	Teaching methods	Remarks
1. Examples of mappings in the Carathéodory family <i>M</i> . Special subclasses of <i>M</i> . Distortion and coefficient bounds.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
2. Sufficient conditions of starlikeness on the unit ball in C ⁿ . Examples of starlike mappings.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
3. Sufficient conditions of convexity on the unit ball in C ⁿ . Examples of convex mappings.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
 Starlike mappings of order α on the Euclidean unit ball in Cⁿ, 0≤ α<1. Growth and coefficient bounds. Examples. 	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
5. Loewner chains and transition mappings (evolution families) in several complex variables. Examples.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
6. Loewner chains and the associated Loewer PDE in higher dimensions. Applications.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
7. The analytical characterizations of starlikeness and spirallikeness of type α on the unit ball in C ⁿ in terms of Loewner chains.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
8. Variation of Loewner chains in C ⁿ . Applications to extremal problems for univalent mappings with parametric representation on the unit ball in C ⁿ .	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	

9. Bounded mappings with parametric representation	Applications of course
on the unit ball in C ⁿ . Growth and coefficient	concepts. Description of
bounds. Applications to extremal problems.	arguments and proofs for
counted. Approvious to extremul problems.	solving problems.
	Homework assignments.
	Direct answers to students.
10. Univalence criteria on the unit ball in \mathbb{C}^n via	Applications of course
the theory of Loewner chains.	concepts. Description of
	arguments and proofs for
	solving problems.
	Homework assignments.
	Direct answers to students.
11. Kernel convergence and Loewner chains in \mathbb{C}^n .	Applications of course
	concepts. Description of
	arguments and proofs for
	solving problems.
	Homework assignments.
	Direct answers to students.
12. Extension operators that preserve analytic and	Applications of course
geometric properties.	concepts. Description of
Open problems, conjectures, and research	arguments and proofs for
directions.	solving problems.
W	Homework assignments.
	Direct answers to students.

Bibliography

- 1. I. Graham, G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.
- 2. G. Kohr, *Basic Topics in Holomorphic Functions of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 2003.
- 3. G. Kohr, Geometric Function Theory in Several Complex Variables, Seminar notes, 2020.
- 4. F. Bracci, I. Graham, H. Hamada, G. Kohr, *Variation of Loewner chains, extreme and support points in the class* S⁰ *in higher dimensions*, Constructive Approximation, **43** (2016), 231-251.
- 5. P. Duren, I. Graham, H. Hamada, G. Kohr, *Solutions for the generalized Loewner differential equation in several complex variables*, Mathematische Annalen, **347** (2010), 411-435.
- 6. I. Graham, H. Hamada, G. Kohr, M. Kohr, *Extremal properties associated with univalent subordination chains in* Cⁿ, Mathematische Annalen, **359** (2014), 61-99.
- 7. G. Kohr, P. Liczberski, *Univalent Mappings of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 1998.
- 8. P. Curt, *Special Chapters in Geometric Function Theory of Several Complex Variables*, Editura Albastră, Cluj-Napoca, 2001 (in Romanian).
- 9. S. Gong, Convex and Starlike Mappings in Several Complex Variables, Kluwer Acad. Publ., Dordrecht, 1998.
- 10. S. Gong, The Bieberbach Conjecture, Amer. Math. Soc. Intern. Press, Providence, R.I., 1999.
- 11. S.G. Krantz, *Function Theory of Several Complex Variables*, Reprint of the 1992 Edition, AMS Chelsea Publishing, Providence, Rhode Island, 2001.
- 12. Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- 13. F. Bracci (Ed.), *Geometric Function Theory in Higher Dimension*, Springer INdAM Series, vol. **26** (2017), Springer International Publishing AG, Cham, Switzerland.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the advanced mathematics plays an essential role. This discipline is useful in specifical PhD research activities and in preparing future researchers in pure and applied mathematics.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Knowledge of concepts and basic results	Written exam.	60%			
	Ability to justify by proofs theoretical results					
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the course in the study of advanced topics of geometric function theory in C ⁿ and related area.	Evaluation of reports and homework during the semester, and active participation in the seminar activity. A midterm written test.	25%			
	There are valid the official rules of the faculty concerning the attendance of students to teaching activities.					
10.6 Minimum performance standards						
The final grade should be at least 5 (from a scale of 1 to 10).						

Date Signature of course coordinator Signature of seminar coordinator

23.04.2021 Professor PhD Mirela KOHR Professor PhD Mirela KOHR

Date of approval Signature of the head of department

Professor PhD Octavian AGRATINI