SYLLABUS

1. mormation regarding the progra	
1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme / Qualification	Advanced Mathematics

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the dis	scipl	ine	Vector Optimization				
2.2 Course coordin	ator		Prof. Nicolae Popovici, PhD. habil.				
2.3 Seminar coordi	nato	r	Prof. Nicolae Popovici, PhD. habil.				
2.4. Year of study	1	2.5 Semester	r 1 2.6. Type of Exam 2.7 Type of Comput			Compulsory	
			evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar	14
Time allotment:					
Learning using manual, course suppor	t, bił	oliography, course notes	8		36
Additional documentation (in libraries, on electronic platforms, field documentation)					36
Preparation for seminars/labs, homework, papers, portfolios and essays					36
Tutorship					15
Evaluations					
Other activities:					-
3.7 Total individual study hours 158					·
3.8 Total hours per semester		200			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	• Mathematical analysis 1 (Analysis on R);
	• Mathematical analysis 2 (Differential Calculus on R ⁿ).
4.2. competencies	Ability to use abstract notions, theoretical results and practical
	methods of Mathematical Analysis.

8

5. Conditions (if necessary)

5.1. for the course	Lecture room equipped with a beamer
5.2. for the seminar /lab	Standard room
activities	

6. Specific competencies acquired

Professional competencies	Ability to use appropriate mathematical methods and implementable algorithms for solving practical vector optimization problems.
Transversal competencies	To apply rigorous and efficient work rules, by adopting a responsible attitude towards the scientific and didactic activities. To develop the own creative potential in specific areas, following the professional ethical norms and principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Students should acquire knowledge about vector (multicriteria) optimization.
7.2 Specific objective of the discipline	Students will study several classes of practical vector optimization problems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Preorder relations; maximal elements of a set with	Direct instruction,	
respect to a preference relation; formulation of general	mathematical proof,	
optimization problems. Linear prorder relations	exemplification	
(compatible with the vector addition and		
multiplication of vectors by scalars).		
2. Cones; characterizations of (convex, pointed,	Direct instruction,	
generating, totally-generating) cones; the relationship	mathematical proof,	
between linear preorder relations and convex cones.	exemplification	
Topological properties of convex cones: (relative)		
solid and closed convex cones; the polar cone of a set;		
polyhedral cones.		
3. Concepts of efficiency in vector optimization;	Direct instruction,	
efficient points and weakly efficient points w.r.t. a	mathematical proof,	
convex cone; efficient solutions and weakly efficient	exemplification	
solutions of vector optimization problems.		
4. Monotone and strictly monotone scalar functions	Direct instruction,	
(w.r.t. a preorder relation) and the their extremum	mathematical proof,	
points; examples of linear/nonlinear monotone	exemplification	
functions; conical sections of a set; the existence of		
efficient/weakly efficient points.		
5. Sufficient conditions for efficiency and weak	Direct instruction,	
efficiency. Cone-convex sets; necessary conditions for	mathematical proof,	
weak-efficiency. Proper efficient points.	exemplification	
6. Cone-convex vector-valued functions, their	Direct instruction,	
characterizations by means of the epigraph and the	mathematical proof,	
polar cone; the cone-convexity of the images of	exemplification	
convex sets by cone-convex functions.		
7. Explicitly cone-quasiconvex functions and	Direct instruction,	
lexicographic quasiconvex vector-valued functions,	mathematical proof,	
their characterization and some of important	exemplification	
properties; the relationship between explicit cone-		
convexity and lexicographic quasiconvexity.		

8. Scalarization methods for vector optimization		
	Direct instruction,	
problems: the weighting method (for convex objective	mathematical proof,	
functions); the parametric method (for quasiconvex/,	exemplification	
explicitly quasiconvex/ explicitly quasiaffine objective		
functions).		
9. The geometric and topological structure of the	Direct instruction,	
boundary of a closed radiant set (the homeomorphism	mathematical proof,	
of Bonnisseau-Cornet).	exemplification	
10. Simply shaded and completely shaded sets (w.r.t. a	Direct instruction,	
convex cone) and their characterizations. The	mathematical proof,	
connectedness /contractibility of the sets of efficient	exemplification	
points.		
11. The role of Helly's Theorem in reducing the	Direct instruction,	
number of criteria involved in vector optimization	mathematical proof,	
with convex/quasiconvex objective functions.	exemplification	
12. Pareto reducible vector optimization problems	Direct instruction,	
involving explicitly / lexicographic quasiconvex	mathematical proof,	
objective functions.	exemplification	
13. Approximate efficient / weakly efficient solutions	Direct instruction,	
and their role in numerical methods.	mathematical proof,	
	exemplification	
14. Efficient sequences and their relationship with the	Direct instruction,	
minimizing sequences of certain scalarization	mathematical proof,	
functions.	exemplification	
Bibliography		1
	Ũ	x, 2005.
 GOEPFERT, A., RIAHI, H., TAMMER, C., ZALINI Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer 	s, and Extensions. Springer, Verlag, Berlin, 1989.	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005.	ods in Partially Ordered Berlin, 2004.
Spaces. Springer-Verlag, New York, 2003. 4. JAHN, J.: Vector Optimization. Theory, Applications 5. LUC, D.T.: Theory of Vector Optimization. Springer 6. POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based	ods in Partially Ordered Berlin, 2004.
Spaces. Springer-Verlag, New York, 2003. 4. JAHN, J.: Vector Optimization. Theory, Applications 5. LUC, D.T.: Theory of Vector Optimization. Springer 6. POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar 1. Geometric interpretation of the preference relations induced by the objective functions of some practical	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate,	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>- 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate,	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>- 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). Exercises involving the concepts of: polar cone, 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate,	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). 	s, and Extensions. Springer, T Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). Exercises involving the concepts of: polar cone, 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). Exercises involving the concepts of: polar cone, basis of a convex cone, the (relative) interior, and the 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). Exercises involving the concepts of: polar cone, basis of a convex cone, the (relative) interior, and the facial structure of a convex cone. 	s, and Extensions. Springer, T Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). Exercises involving the concepts of: polar cone, basis of a convex cone. Finding the efficient / weakly efficient solutions of 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). Exercises involving the concepts of: polar cone, basis of a convex cone. Finding the efficient / weakly efficient solutions of certain vector optimization problems by a geometric approach. 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). Exercises involving the concepts of: polar cone, basis of a convex cone. Finding the efficient / weakly efficient solutions of certain vector optimization problems by a geometric 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. JAHN, J.: Vector Optimization. Theory, Applications LUC, D.T.: Theory of Vector Optimization. Springer POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). Exercises involving the concepts of: polar cone, basis of a convex cone, the (relative) interior, and the facial structure of a convex cone. Finding the efficient / weakly efficient solutions of certain vector optimization problems by a geometric approach. Exercises concerning the (strict) monotony of 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. 4. JAHN, J.: Vector Optimization. Theory, Applications 5. LUC, D.T.: Theory of Vector Optimization. Springer 6. POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar 1. Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) 2. Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). 3. Exercises involving the concepts of: polar cone, basis of a convex cone. 4. Finding the efficient / weakly efficient solutions of certain vector optimization problems by a geometric approach. 5. Exercises concerning the (strict) monotony of certain scalar functions. 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. 4. JAHN, J.: Vector Optimization. Theory, Applications 5. LUC, D.T.: Theory of Vector Optimization. Springer 6. POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar 1. Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) 2. Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). 3. Exercises involving the concepts of: polar cone, basis of a convex cone. 4. Finding the efficient / weakly efficient solutions of certain vector optimization problems by a geometric approach. 5. Exercises concerning the (strict) monotony of certain scalar functions. 	s, and Extensions. Springer, T Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. 4. JAHN, J.: Vector Optimization. Theory, Applications 5. LUC, D.T.: Theory of Vector Optimization. Springer 6. POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar 1. Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) 2. Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). 3. Exercises involving the concepts of: polar cone, basis of a convex cone, the (relative) interior, and the facial structure of a convex cone. 4. Finding the efficient / weakly efficient solutions of certain vector optimization problems by a geometric approach. 5. Exercises concerning the (strict) monotony of certain scalar functions. 6. Identifying the (weakly) efficient solutions of some concrete vector optimization problems in R² by means 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs Problem-based	ods in Partially Ordered Berlin, 2004.
 Spaces. Springer-Verlag, New York, 2003. 4. JAHN, J.: Vector Optimization. Theory, Applications 5. LUC, D.T.: Theory of Vector Optimization. Springer 6. POPOVICI, N.: Optimizare vectoriala, Casa Cartii de 8.2 Seminar 1. Geometric interpretation of the preference relations induced by the objective functions of some practical optimization problems (Fermat-Weber-type location problems, resource allocation problems, etc.) 2. Particular classes of convex cones in the <i>n</i>-dimensional Euclidean space (polyhedral cones, the lexicographic cone, Phelps-type cones). 3. Exercises involving the concepts of: polar cone, basis of a convex cone. 4. Finding the efficient / weakly efficient solutions of certain vector optimization problems by a geometric approach. 5. Exercises concerning the (strict) monotony of certain scalar functions. 	s, and Extensions. Springer, Verlag, Berlin, 1989. Stiinta, Cluj-Napoca, 2005. Teaching methods Problem-based instruction, debate, mathematical proofs Problem-based instruction, debate, mathematical proofs	ods in Partially Ordered Berlin, 2004.

Problem-based

7. Geometric representations of the direct images of

convex/polyhedral sets by certain cone-convex	instruction, debate,
functions and their (weakly) efficient points.	mathematical proofs
8. Geometric representation of the level sets of certain	Problem-based
cone-quasiconvex vector-valued functions.	instruction, debate,
-	mathematical proofs
9. Exercises concerning explicitly quasiconvex	Problem-based
functions (in particular, lexicographic convex	instruction, debate,
functions and linear-fractional functions).	mathematical proofs
10. Bicriteria optimization problems solved by a	Problem-based
geometrical approach.	instruction, debate,
	mathematical proofs
11. Linear vector optimization problems solved by the	Problem-based
weighting scalarization method.	instruction, debate,
	mathematical proofs
12. Nonlinear vector optimization problems solved by	Problem-based
the weighting scalarization method.	instruction, debate,
	mathematical proofs
13. Linear vector optimization problems solved by the	Problem-based
parametric method.	instruction, debate,
	mathematical proofs
14. Nonlinear vector optimization problems solved by	Problem-based
the parametric method.	instruction, debate,
	mathematical proofs

Bibliography

1. ALZORBA, S., GUNTHER, C., POPOVICI, N., TAMMER, C.: A new algorithm for solving planar multiobjective location problems involving the Manhattan norm, European Journal of Operational Research, Vol. 258 (1) 2017, pp. 35-46.

- 2. EHRGOT, M.: Multicriteria Optimization. Springer, Berlin Heidelberg New York, 2005.
- 3. POPOVICI, N.: Pareto reducible multicriteria optimization problems, Optimization, Vol. 54 (2005), pp. 253-263.
- 4. SAWARAGI, Y., NAKAYAMA, H., TANINO, T.: Theory of Multiobjective Optimization. Academic Press, New York, 1985.
- 5. YU, P.L.: Multiple criteria decision making: concepts, techniques and extensions. Plenum Press, New York - London, 1985.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	- Knowledge of theoretical	Oral exam	75%	
	concepts and capacity to			
	rigorously prove the main			
	theorems;			
	- Ability to solve practical			
	exercises and theoretical			
	problems			
10.5 Seminar/lab activities	- Attendance and active	Continuous evaluation	25%	
	class participation			
10.6 Minimum performance standards				
The final grade should be g	greater than or equal to 5.			
-				

40 T ...

Date	Signature of course coordinator	Signature of seminar coordinator
27.04.2021	Prof. Nicolae Popovici, Ph.D. Habil.	Prof. Nicolae Popovici, Ph.D. Habil.
Date of approval		Signature of the head of department
28.04.2021		Prof. Octavian Agratini, Ph.D.