1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the disciplineMME3103 Group Theory and applications								
2.2 Course coordinator prof. dr. Andrei Marcus								
2.3 Seminar coordinator prof. dr. Andrei Marcus								
2.4. Year of	1	2.5	1	2.6. Type ofE2.7 Type ofCompulsory				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

•					
3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/l aboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/ laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					28
Preparation for seminars/labs, homework, papers, portfolios and essays					49
Tutorship					14
Evaluations					14
Other activities:					
3.7 Total individual study hours		133			1

5.7 Total mulvidual study nours	155
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	 deep knowledge of bachelor level algebra, especially of the following subjects: algebraic structures linear algebra
4.2. competencies	 ability to perform symbolic calculations ability to operate with abstract concepts ability to do logical deductions ability to solve mathematics problems bases on aquired notions

5. Conditions (if necessary)

5.1. for the course	blackboard, projector
5.2. for the seminar /lab	• blackboard
activities	

6. Specific competencies acquired

Professional competencies	 ability to perform symbolic calculations in various structures (groups, matrix algebras etc) ability to operate with abstract concepts ability to complex logical deductions ability to solve mathematics problems bases on aquired notions 	
Transversal competencies	 abstract reasoning applying mathematics in real life ability to solve problems 	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Advanced knowledge on group theory. Ability to solve more difficult problems
7.2 Specific objective of the discipline	 students will operate with fundamental concepts of group theory students will aquire knowlegde regarding the structure of groups from various important classes. students solve problems, theoretical and practical, using instruments of modern algebra, regarding symmetry groups.

8. Content

8.1 Course	Teaching methods	Remarks
1. Revision: groups, subgroups, factor group, isomorphism theorems. Symmetry groups.	Explanation, dialogue, examples, proofs	
2. The symmetric group. Group actions on sets.	Explanation, dialogue, examples, proofs	
3. p-groups and Sylow theorems	Explanation, dialogue, examples, proofs	
4. Direct and semidirect products. Finitely generated abelian groups. Dihedral groups.	Explanation, dialogue, examples, proofs	
5. Group extensions. The Schur-Zassenhaus theorem.	Explanation, dialogue, examples, proofs	
6. Classification of groups of given order.	Explanation, dialogue, examples, proofs	
7. The general linear group.	Explanation, dialogue, examples, proofs	
8. Algebras, subalgebras, homomorphisms, ideals, factor algebras.	Explanation, dialogue, examples, proofs	
9. Examples. Group algebra.	Explanation, dialogue, examples, proofs	

10. Representations and modules. Simple modules	Explanation, dialogue,
(irreducible representations) and	examples, proofs
indecomposable modules.	
11. Semisimple algebras and modules.	Explanation, dialogue,
	examples, proofs
12. Representations of finite groups. Characters.	Explanation, dialogue,
	examples, proofs
13. Orthogonality of characters.	Explanation, dialogue,
	examples, proofs
14. The character table of a finite group.	Explanation, dialogue,
	examples, proofs

Bibliography

[1] M.A. Armstrong. Groups and symmetry. Springer-Verlag 1988.

[2] J.J. Rotman. An introduction to the theory of groups. Springer-Verlag. 1995.

8.2 Seminar / laboratory	Teaching methods	Remarks
15. Revision: groups, subgroups, factor group,	dialogue, examples, proofs	
isomorphism theorems. Symmetry groups.		
16. The symmetric group. Group actions on sets.	dialogue, examples, proofs	
17. p-groups and Sylow theorems	dialogue, examples, proofs	
18. Direct and semidirect products. Finitely	dialogue, examples, proofs	
generated abelian groups. Dihedral groups.		
19. Group extensions. The Schur-Zassenhaus	dialogue, examples, proofs	
theorem.		
20. Classification of groups of given order.	dialogue, examples, proofs	
21. The general linear group.	dialogue, examples, proofs	
22. Algebras, subalgebras, homomorphisms,	dialogue, examples, proofs	
ideals, factor algebras.		
23. Examples. Group algebra.	dialogue, examples, proofs	
24. Representations and modules. Simple modules	dialogue, examples, proofs	
(irreducible representations) and		
indecomposable modules.		
25. Semisimple algebras and modules.	dialogue, examples, proofs	
26. Representations of finite groups. Characters.	dialogue, examples, proofs	
27. Orthogonality of characters.	dialogue, examples, proofs	
28. The character table of a finite group.	dialogue, examples, proofs	
		•

Bibliography

3. J.L. Alperin and R.B. Bell. Groups and representatons. Springer-Verlag. 1995.

4. D.J.S. Robinson. An introduction to the theory of groups. 2nd Ed. Springer-Verlag. 1996.

5. B.E. Sagan. The symmetric group. Springer-Verlag. 2001.

6. John B. Fraleigh. A First course in abstract algebra. 6th edition, Addison Wesley.

7. Michael Artin. Algebra. Prentice Hall 1991.

8. D.S. Dummit and R.M. Foote. Abstract Algebra. 2nd edition. John Wiley & Sons, 1999.

9. J.A. Gallian. Contemporary Abstract Algebra. 7th Edition.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Such a course exists in the curricula of all major universities in Romania and abroad;
- Groups are fundamental mathematical structures and have multiple applications in geometry,

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	 know the basic principles of the field; apply the new concepts	- written exam	75%			
10.5 Seminar/lab activities	- problem solving	- homeworks	25%			
10.6 Minimum performance standards						
to aquire 5 points to pass the exam						

Date	Signature of course coordinator	Signature of seminar coordinator
14.04.2021	Prof.dr. Andrei Mărcuș	Prof.dr. Andrei Mărcuș

Date of approval

.....

Signature of the head of department

Prof. dr. Octavian Agratini