SYLLABUS

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software Engineering
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)			Big Data Processing and Applications				
(ro)							
2.2 Course coordin	nator		Le	ct. Dr. Ioana-Georg	iana	Ciuciu	
2.3 Seminar coordinator		Lect. Dr. Ioana-Georgiana Ciuciu					
2.4. Year of study	f study 2 2.5 Semester 3 2.6. Type of evaluation E 2.7 Type of discipline Option				Optional		
2.8 Code of the discipline		MME8158		•			·

3. Total estimated time (hours/semester of didactic activities)

et i otal estimatea anne (noars/semese					
3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:	•				hours
Learning using manual, course suppor	t, bił	oliography, course note	S		35
Additional documentation (in libraries, on electronic platforms, field documentation)					45
Preparation for seminars/labs, homework, papers, portfolios and essays				47	
Tutorship					15
Evaluations					16
Other activities:					-
3.7 Total individual study hours		119			
3.8 Total hours per semester		175			
3.9 Number of ECTS credits		7			

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Basic knowledge of data analytics, preferably

Basic knowledge of data visualization, preferably
Programming skills

5. Conditions (if necessary)

5.1. for the course	•	Room with video projector		
5.2. for the seminar /lab	•	Room with computers as needed;		
activities	•	Big Data software installed		
	•	High level programming language environment		

6. Specific competencies acquired

<u></u>	competencies acquired
	• Use of non-traditional databases for storing and processing large amounts of data
Professional competencies	Advanced querying over distributed information resources
Professional competencie	• Evaluation, testing and validation with real-world data
4 S	• Learning to conduct incipient research in the field of Big Data
	Methods and algorithms for data processing and analysis applied to Big Data
Ipetencies	• Multidisciplinary competencies spanning various application sectors (e.g., life sciences and bioinformatics, telco, media, finance, security, health, energy, etc.)
Transversal competencies	• Data Science competencies, combining data analyst and data engineer- specific competencies (e.g., competencies from the fields of mathematics, statistics, information science, computer science, databases, machine learning, data mining, visualization, etc.)
Trans	• Manifest responsible attitudes towards the scientific and didactic fields

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Handling (extremely) large amounts of digital data in various formats (text, video, financial, medical, etc.)
7.2 Specific objective of the discipline	• Enable the use of novel algorithms, software infrastructures and methodologies for the purpose of processing (store, retrieve, analyze) large amounts of data
	Provide decision support over large volumes of data
	• Enable the creation of applications and services for various business
	domains based on the results of big data analysis.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Data Science and Big Data	Exposure, description,	
	explanation, examples,	

	case studies
2. Industrial Standards for Data Mining	Exposure, description,
Projects	explanation, examples,
110,000	case studies
3. Big Data Architecture	Exposure, description,
	explanation, examples,
	case studies
4. Batch Layer	Exposure, description,
	explanation, examples,
	case studies
5. Serving Layer - part I	Exposure, description,
	explanation, examples,
	case studies
6. Serving Layer - part II	Exposure, description,
	explanation, examples,
	case studies
7. Speed Layer - part I	Exposure, description,
	explanation, examples,
	case studies
8. Speed Layer - part II	Exposure, description,
	explanation, examples,
	case studies
9. Data Ingestion	Exposure, description,
	explanation, examples,
	case studies
10. NoSQL Solutions for Big Data	Exposure, description,
	explanation, examples,
	case studies
11. Data Visualization	Exposure, description,
	explanation, examples,
	case studies
12. Big Data Case Studies	Exposure, description,
	explanation, examples,
	case studies
13. Big Data Research Essays Presentation	Exposure, description,
	explanation, examples,
	case studies
14. Big Data Research Essays Presentation	Exposure, description,
	explanation, examples,
	case studies

Bibliography

N. Marz, J. Warren, Big Data. Principles and Best Practices of scalable real-time systems, Manning Publications, 2015

Frontiers in Big Data Analysis, The National Academies Press, Washington, prepublication draft V. Agneeswaran, Big Data Analytics Beyond Hadoop, Pearson Education, 2014

T. White, Hadoop: The Definitive Guide, O'Reilly, 2009

D. Miner, A. Shook, MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop

and Other Systems, O'Reilly, 2012

P. K. Janert, Data Analysis with Open Source Tools, O'Reilly, 2010

Q. E. McCallum, Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work, O'Reilly,

2012

O'Reilly Radar Team, Big Data Now: Current Perspectives from O'Reilly Radar, 2011

S.T. Allen, Storm Applied, 2015

M. Hamstra, Learning Spark, 2014

M. Barlow, Real-Time Big Data Analytics: Emerging Architecture, O'Reilly Media, 2013

J. Janssens, Data Science at the Command Line: Facing the Future with Time-Tested Tools, O'Reilly, 2014

T. Ojeda et al., Practical Data Science Cookbook, 2014

Data Science and Big Data Analytics, EMC Education Services, 2014

R. Morisson, Big Data Now, 2014

G. De Francisci Morales, Big Data and the Web: Algorithms for Data Intensive Scalable Computing IMT Institute for Advanced Studies, 2012

K Asanivik et al., The Landscape of Parallel Computing Research: A View from Berkeley, 2006 J. Dean, Big Data, Data Mining and Machine Learning: Value Creation for Business Leaders and Practitioners, Wiley, 2014

R. Glass and s. Callahan, The Big Data-Driven Business: How to Use Big Data to Win Customers, Beat Competitors, and Boost Profits, Wiley, 2014

D.L. Herben, Big Data, Big Analytics: Emerging Business Intelligence, 2014

A. M. Paganoni and P. Secchi, Advances in Complex Data Modeling and Computational Methods in Statistics, Springer, 2014

8.2 Seminar / laboratory	Teaching methods	Remarks
Semester project organized with groups of about	Research-informed	Groups will be monitored
2-	Learning	via a project wiki
3 students (depending on the requirements		managed with the
and the equipment needed)	Tutorial-based	course/lab the responsible
Team work will be autonomous (focus on	Problem-solving	The lab takes place every
creativity	approach	two weeks and takes two
and critical thinking)		hours
	Team work	
Technical tutorials will be provided to support		
student work around the most important aspects of	Big Data solutions for	
Big Data storage and processing (e.g., Hadoop	concrete problems and	
shell, PySpark, Data Ingestion with Apache	case studies	
Sqoop, NoSQL, etc.)		
Bibliography		
Same as for the course		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Synergies with various local and EU innitiatives: local industry, European Data Science Academy (EDSA),

EU projects such as FERARI, LIFT, LOD2, Open Data Monitor, Data Publishing through the Cloud, Trendminder, Web Observatory, etc.

Collaboration with the IT industry (e.g., Robert Bosch): invited lectures with real-life use cases, semester project topics, equipment (smart sensors).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 to be familiar with the main concepts of the domain to be able to apply these principles in real-life use cases 	Written exam/ Evaluation of a research essay	50%	
10.5 Seminar/lab activities	 to be able to propose viable creative solutions to real-life big data challenges critical thinking individual/team-based research work 	Semester project	50%	
10.6 Minimum perform A minimum graduent the research ess	e of 5 (on a scale from 1 to 10) is r	necessary for the written exam, t	the practical work and	

The lab attendance is compulsory at a rate of 90%, according to the decision of the Computer Science Department Council (http://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-15.03.2017.pdf)

Date

Signature of course coordinator Signature

Signature of seminar coordinator

...4 May 2020...... Lect. Dr. Ioana-Georgiana Ciuciu Lect. Dr. Ioana-Georgiana Ciuciu

Date of approval

Signature of the head of department

.....

Lect. Dr. Adrian Sterca